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Aneura mirabilis is a parasitic liverwort that exploits an existing mycorrhizal association between a basidiomycete and
a host tree. This unusual liverwort is the only known parasitic seedless land plant with a completely nonphotosynthetic
life history. The complete plastid genome of A. mirabilis was sequenced to examine the effect of its nonphotosynthetic
life history on plastid genome content. Using a partial genomic fosmid library approach, the genome was sequenced and
shown to be 108,007 bp with a structure typical of green plant plastids. Comparisons were made with the plastid genome
of Marchantia polymorpha, the only other liverwort plastid sequence available. All ndh genes are either absent or
pseudogenes. Five of 15 psb genes are pseudogenes, as are 2 of 6 psa genes and 2 of 6 pet genes. Pseudogenes of cysA,
cysT, ccsA, and ycf3 were also detected. The remaining complement of genes present in M. polymorpha is present in the
plastid of A. mirabilis with intact open reading frames. All pseudogenes and gene losses co-occur with losses detected in
the plastid of the parasitic angiosperm Epifagus virginiana, though the latter has functional gene losses not found in A.
mirabilis. The plastid genome sequence of A. mirabilis represents only the second liverwort, and first mycoheterotroph,
to have its plastid genome sequenced. We observed a pattern of genome evolution congruent with functional gene losses
in parasitic angiosperms but suggest that its plastid genome represents a genome in the early stages of decay following
the relaxation of selection pressures.

Introduction

Plastids are organelles that originated as a photosyn-
thetic, endosymbiotic cyanobacterium of early eukaryotic
cells (Margulis 1970; Schwartz and Dayhoff 1978; Reith
and Munholland 1993; Douglas 1999). As the once free-liv-
ing, autotrophic cyanobacterium was integrated into its
host, genes essential to its autonomy, indeed, the majority
of its genes, were transferred to the host’s nucleus (Gray
1983; Palmer 1985; Reith and Munholland 1993; Martin
and Hermann 1998; Martin et al. 2002). However, plastids
retain a remnant genome containing, primarily, genes inte-
gral to arguably the most important metabolic process on
earth: photosynthesis. As green algae and their descendents
diversified, the structure and content of the plastid genome
have remained remarkably conserved, particularly so in em-
bryophytes (Raubeson and Jansen 2005). Embryophyte
plastid genome maps are generally assembled as 2 inverted
repeat (IR) regions that separate a large single-copy (LSC)
region from a small single-copy (SSC) region. The genome
usually contains 110–130 unique genes, the majority of
which code for proteins involved in photosynthesis or gene
expression, with the remaining genes coding for transfer
and ribosomal RNA (Raubeson and Jansen 2005).

Genes have been lost independently several times
throughout the evolution of plastid-containing lineages
(Baldauf et al. 1990; Palmer 1991; Martin et al. 1998;
Goffinet et al. 2005), but evidence suggests that purifying
selection acts on a core complement of genes to be retained
in the plastid genome (Palmer 1985; Race et al. 1999;
Bungard 2004). If, however, the selective constraints on
the plastid genome are relaxed, we would expect to see

an accumulation of pseudogenes and gene losses. Such
is the case with the plastid genome of Epifagus virginiana,
an obligate root parasite of beech trees (dePamphilis and
Palmer 1990; Wolfe et al. 1992). The decay of the plastid
genome in E. virginiana likely occurred relatively quickly
with rapid accumulation of short insertions and deletions
and an increase in mutation rate (dePamphilis and Palmer
1990; Wolfe et al. 1992). We would expect to observe a
similar pattern of genome reduction in other plants that
no longer directly rely on photosynthesis to acquire carbon.
One such plant is the only known heterotrophic lineage of
bryophytes.

Aneura mirabilis (Malmb., formerly known as
Cryptothallus mirabilis; Wickett and Goffinet 2007) is
a simple thalloid (Metzgeriales) parasitic liverwort.
Unlike haustorial parasites that directly penetrate host
tissue, A. mirabilis ‘‘cheats’’ a mycorrhizal association be-
tween a basidiomycete, Tulasnella sp., and a host tree such
as pine and birch, a life history commonly known as my-
coheterotrophy or epiparasitism (Bidartondo et al. 2003;
Bidartondo 2005; Leake 2005). The absence of roots in
bryophytes precludes the ability to form a haustorium,
and Ligrone et al. (1993) outline evidence to suggest that
A. mirabilis is, in fact, parasitic; however, the use of ‘‘par-
asite’’ in this case is not well established. In A. mirabilis,
fixed carbon is obtained indirectly from the host via the
fungus that is simultaneously ectomycorrhizal on the
host’s roots and endophytic in the liverwort (Bidartondo
et al. 2003). This exploitation of an existing symbiosis al-
lows A. mirabilis to maintain its subterranean existence.
Living buried in damp humus found up to 30 cm under
damp mats of Sphagnum peat or other bryophytes, the
enigmatic liverwort is clearly able to exist in the absence
of sunlight (Williams 1950; Schuster 1992). With an al-
ternative source of energy, the plastid genome of A. mir-
abilis may be released from selective constraints, and we
would expect to observe a trend of genome reduction as
seen in E. virginiana.
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In the holoparasite E. virginiana, the plastid genome is
70,028 bp (Wolfe et al. 1992) compared with 155,939 bp in
tobacco (Wakasugi et al. 1998). Four ribosomal RNA
genes, 17 transfer RNA genes, and only 21 protein-coding
genes remain, of which only 4 are not directly involved in
plastid gene expression. Evidence that these genes are
evolving under purifying selection, as well as evidence that
nuclear-encoded proteins are still targeted to the plastid,
suggests that there is a plastid function beyond the bioen-
ergetic processes of photosynthesis and chlororespiration,
perhaps, in fatty acid biosynthesis (dePamphilis and Palmer
1990; Schnurr et al. 2002). Similar patterns of gene loss and
retention have been observed in the hemi- and holoparasitic
plant genus Cuscuta (Haberhausen et al. 1992; Krause et al.
2003); however, little is known about nonphotosynthetic
plastid genome evolution outside the angiosperms or in my-
coheterotrophs (Bidartondo 2005). Aneura mirabilis
presents a unique case for broadening the phylogenetic
breadth of our understanding of plastid genome structure
and content in nonphotosynthetic embryophytes.

Liverworts are sister to all other land plants (Qiu et al.
2006), and one of the earliest plastid genome sequences
reconstructed was that of Marchantia polymorpha, in
1986 (Ohyama et al. 1986). Currently, this remains the only
liverwort plastid genome sequence available, whereas over
70 have been published for the sister group (GenBank).
In this study, we present the second plastid sequence of
a liverwort, A. mirabilis, allowing us to address plastid evo-
lution in an independent lineage of nonphotosynthetic
embryophytes.

Materials and Methods

Plastid DNA was prepared for sequencing using a par-
tial genomic fosmid library. This method, including DNA
extraction, fosmid library construction, and clone selection
and preparation, is described in detail in McNeal et al.
(2006). Six grams of fresh A. mirabilis was used, and
a voucher specimen is deposited at the University of Con-
necticut herbarium (CONN). Plastid-specific probes were
produced by labeling, with [a_32P]dATP, a pool of poly-
merase chain reaction (PCR) products generated from
the plastid genes rps4, rps14, trnL, psaC, psbA, the
atpB-rbcL spacer, and the ndhB region between rps7
and trnL-CAA (in M. polymorpha). Positive hybridizations
indicated clones containing plastid inserts. Twenty-six pos-
itive hybridizations were observed and then selected from
the original 384-well plate. Each fosmid insert was end se-
quenced using the T7 forward primer and the pEpiFos re-
verse primer (see manufacturer’s manual for primer
sequences) using an ABI 3100 genetic analyzer. Cycle se-
quencing reactions were performed with 1 ll DNA tem-
plate, 1 ll each of 10 mM primer, 2 ll of ABI BigDye
terminator, with water added to a total volume of 10 ll.
Each sequence was submitted to a BlastN search to deter-
mine the location and direction of each insert relative to the
M. polymorpha genome. PCR tests confirmed the identity
of each insert, and a minimally overlapping set of 4 clones
covering the complete plastid genome was selected for
shotgun sequencing.

Prepared fosmid clones were mechanically sheared in-
to random fragments of approximately 3 kb using a Hydro-
shear device (GeneMachines, San Carlos, CA). These
fragments were enzymatically end repaired, and 3-kb frag-
ments were purified by gel electrophoresis. Fragments were
ligated into dephosphorylated pUC18 vector, transformed
into Escherichia coli using standard techniques (Sambrook
et al. 1989), and arrayed into 384-well plates, one for each
prepared fosmid clone. The clones were robotically pro-
cessed through rolling circle amplification of plasmids
and end sequenced. These sequences were processed,
trimmed, screened for vector sequence, and assembled us-
ing Phred and Phrap (Ewing and Green 1998; Ewing et al.
1998). Quality scores and assemblies were viewed and ver-
ified using Consed 12 (Gordon et al. 1998). A short gap in
coverage, approximately 600 bp, was closed by PCR
amplification using newly designed primers (psbMF:
GGAAGTTAATGTCTCAGCATTTG and trnCR:
GGTGACATGGCCAAGTGGGAAGGC) and sequenced
using an ABI 3100 genetic analyzer. Automated assembly
methods cannot distinguish between the 2 IRs; therefore,
manual input was required to reconstruct part of one IR.
The final assembly has an average depth of coverage of
8� and an average quality score per base of 85.7. We as-
sembled the sequence as a circular map with 2 copies of the
IR, an organization verified by the occurrence of individual
IR boundaries in 3 of the 4 fosmid clones selected for shot-
gun sequencing. We annotated the genome using Dual
Organellar GenoMe Annotator (DOGMA) available on
the web at http://dogma.ccbb.utexas.edu/ (Wyman et al.
2004). Genes were located by using a database of previ-
ously published chloroplast genomes, from which Blast
searches (Altschul et al. 1997) are used to find approximate
gene positions. From this initial annotation, we located
hypothetical starts, stops, and intron positions based on com-
parisons to homologous genes in other chloroplast genomes.

Gene content conservation between 3 other bryo-
phyte plastid genomes and 6 tracheophyte plastid ge-
nomes was visualized using MultiPipMaker (Schwartz
et al. 2000) available on the web at http://pipmaker.bx.
psu.edu/pipmaker/. MultiPipMaker (Schwartz et al.
2000) is a powerful tool for visualizing genome-level con-
servation across multiple genomes, irrespective of gene
order (see Maul et al. 2002 for a detailed description of
its utility). We chose Physcomitrella patens (Sugiura
et al. 2003; GenBank accession number AP005672) as
the reference genome because its annotation is more re-
flective of current gene nomenclature than that of the early
genome of M. polymorpha. Other plastid genomes in-
cluded in the analyses were M. polymorpha (Ohyama
et al. 1986; NC_001319), the hornwort Anthoceros formo-
sae (Kugita et al. 2003; NC_004543), the lycophyte
Huperzia lucidula (Wolf et al. 2005; AY660566), the
pines Pinus thunbergii (Wakasugi et al. 1994;
NC_001631) and Pinus koraiensis (Noh EW, Lee JS, Choi
YI, Han MS, Yi YS, Han SU, unpublished data), Arabi-
dopisis thaliana (Sato et al. 1999; NC_000932), Nicotiana
tabacum (Shinozaki et al. 1986; NC_001879), and E. vir-
giniana (Wolfe et al. 1992; NC_001568). We used the
program Mulan (Ovcharenko et al. 2005), available on
the web at http://mulan.dcode.org/, to visualize gene order
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conservation between M. polymorpha and A. mirabilis,
with the latter used as the reference genome.

Results

The plastid genome of A. mirabilis is 108,007 bp with
an LSC region of 77,553 bp separated from a 13,974-bp
SSC region by 2 IRs, each of 8,240 bp. The complete nu-
cleotide sequence and annotation are deposited in GenBank
(EU043314). The genome was drawn as a circular map with
orientations of the LSC and SSC regions consistent with M.
polymorpha (fig. 1). All genes in both M. polymorpha and
A. mirabilis are in the same order and transcribed in the
same direction, with the exception of an inversion of psbE
and petL in the LSC region of A. mirabilis (fig. 2). The gene
content and gene order of the IR is identical to that of

M. polymorpha. A truncated pseudogene of the unknown
protein ycf68 in A. mirabilis was detected between the 2
exons of trnI-GAU; however, Raubeson et al. (2007) con-
cluded that levels of sequence divergence for this gene are
consistent with noncoding regions in the IR and this is
likely not a functional gene. As with M. polymorpha, the
IR boundaries are between trnV-GAC and trnI-CAU
(IRB-LSC), between trnV-GAC and 3#rps12 (IRA-LSC),
between trnN-GUU and ndhF (IRB-SSC), and between
trnN-GUU and chlL (IRA-SSC).

Of the 116 unique genes (i.e., including only one copy
of the IR) present in the plastid genome of A. mirabilis, 31
are transfer RNAs, 4 are ribosomal RNAs, 4 are proteins of
unknown function (ycf genes), and the remaining 77 genes
code for proteins of known function. Nineteen of the pro-
tein-coding genes are pseudogenes. Internal stop codons

FIG. 1.—Plastid genome map of Aneura mirabilis. Genes on the outside of the circle are transcribed in the counterclockwise direction, and genes
on the inside of the circle are translated in the clockwise direction. Structural components are labeled on the inner circle as LSC and SSC regions and
IR. Asterisks denote split genes. Pseudogenes are notated with a w.
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were detected in several genes due to short insertions or
deletions that disrupt the reading frame. Insertions were
verified by inspecting the original sequence reads spanning
the insertion sites. In all cases, the read depth was greater
than 8� and the insertion sites were unambiguous. Both

photosystems I and II possess pseudogenes in A. mirabilis:
psaA, psaB, psbB, psbC, psbD, psbE, and psbK. Two of 6
genes that code for cytochrome b6/f (pet), petA and petB are
pseudogenes, as is ccsA, which is involved with heme at-
tachment of cytochrome c. Of the 7 chlororespiratory (ndh)
genes present in the SSC region of M. polymorpha, 4 are
deleted in A. mirabilis, and the remaining 3, ndhD, ndhE
and ndhF, are truncated pseudogenes. Four ndh genes
are located in the LSC region of M. polymorpha; in A. mir-
abilis, ndhK is absent, and ndhB, ndhC, and ndhJ are pseu-
dogenes. The remaining pseudogenes include one protein
of unknown function, ycf3, and 2 probable transport pro-
teins, cysA and cysT. One protein of unknown function ab-
sent from A. mirabilis, ycf66, is not annotated in the plastid
genome of M. polymorpha; however, this gene is recovered
when the plastid genome sequence of M. polymorpha is an-
notated with DOGMA. Fifteen genes are split genes in A.
mirabilis, 6 of which are transfer RNA genes. Split genes
are consistent with those in M. polymorpha with the excep-
tion of ndhA and ndhB due to the partial or complete loss of
these genes.

Figure 3 highlights the regions of the genome that are
either missing or conserved between A. mirabilis and other
embryophytes through a comparison with the genome of
the moss P. patens. Box D, for example, shows the loss
of ndh genes in the SSC of A. mirabilis, both Pinus ge-
nomes, and E. virginiana. The genomic region containing
psaA, psaB, and ycf3 is highly conserved across all embry-
ophytes, except in A. mirabilis and E. virginiana (box B).
Box A includes petA, which is a pseudogene in A. mirabi-
lis. This region is conserved at the 75–100% level in the 3
bryophytes (excluding A. mirabilis) and H. lucidula, sug-
gesting that selective constraints have been relaxed on this
portion of the genome in A. mirabilis.

Discussion

The plastid genome of A. mirabilis is characterized by
genome reduction and the complete or partial loss of 25
genes. Although gene loss from the chloroplast genome
of land plants is not uncommon (see e.g., from bryophytes,
Goffinet et al. 2005 and Sugiura et al. 2003), it is generally
associated with single events and transfer to the nucleus,

FIG. 2.—The 2 complete chloroplast genomes of liverworts Aneura
mirabilis and Marchantia polymorpha are conserved with respect to gene
order with the exception of a small inversion. (A) A PipMaker output
from a Mulan analysis. Points along the positive slope are in the same
orientation in both genomes, whereas points along the negative slope
indicate sequences that can be aligned with each other but are oriented in
opposite directions. The 2 groups of points that fall along the negative
slope in the upper right corner represent the IRs. The short group of points
along the negative slope indicated by the arrow represents an inversion of
psbE and petL shown in (B).

FIG. 3.—MultiPipMaker analysis of 10 sequenced land plant chloroplast genomes using Physcomitrella patens as the reference genome. The
reference genome is represented as the uppermost line with gene orientations shown as arrows, and the IRs are shown as horizontal lines. Numbers
across the bottom edge of the figure indicate positions on the linearized reference genome. Regions that align with the P. patens genome, irrespective of
gene order, are represented as vertical black (75–100% identity) and gray (50–75% identity) bars. Boxed areas and asterisks are referred to in the text.
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rather than wholesale genome reduction (Raubeson and
Jansen 2005). Overall reduction in genome content and
function has been shown in angiosperms that no longer rely
on the major bioenergetic process of the plastid: photosyn-
thesis (e.g., Wolfe et al. 1992). Aneura mirabilis is the only
bryophyte known to obtain carbon from a source other than
photosynthesis (Bidartondo et al. 2003). Our findings from
the plastid genome sequence of A. mirabilis indicate that the
pattern of genome reduction seen in nonphotosynthetic an-
giosperms is not limited to flowering plants. The plastid ge-
nome of E. virginiana is substantially more reduced than
that of A. mirabilis (fig. 3), but there are no genes lost in
the liverwort that are retained in beechdrops, indicating
a common directionality of these losses (table 1). We also
see that the losses in A. mirabilis are concentrated in genes
and functional groups that are completely lost from E. vir-
giniana (table 1). It is likely that the less extensive genome
reduction of A. mirabilis compared with E. virginiana re-
flects a recent loss of photosynthesis, which is consistent
with amounts of DNA sequence divergence from its pho-
tosynthetic sister taxon (Wickett and Goffinet 2007). In the
recently sequenced plastid genome of Cuscuta gronovii,
a converse pattern of evolution was observed. Unlike A.
mirabilis, C. gronovii exhibits a reduction in the transcrip-
tional apparatus of the plastid, rather than in plastid-

encoded genes of the photosynthetic apparatus (Funk
et al. 2007). Though both plants are obligately heterotro-
phic and exhibit an intermediate level of genome decay be-
tween a fully photosynthetic plant and E. virginiana, the
question of whether the relative importance of host-inde-
pendent life-history stages accounts for this discrepancy
must be raised.

The pattern of gene loss, or loss of function, is not sur-
prising given the role of these genes. Twenty-one of the 25
gene losses are in functional groups associated with the bio-
energetic processes of photosynthesis. Both photosystems I
and II are made up of subunits encoded by the plastid genes
psa and psb, respectively (Blankenship 2002), and both of
these subunit groups possess pseudogenes in A. mirabilis.
The 2 genes encoding the core reaction center of photosys-
tem I appear to no longer be functional; psaB contains in-
ternal stop codons and only a minute fraction of psaA
remains at all. Two of the 5 genes that encode subunits
of the core reaction center of photosystem II, psbD and
psbE, are pseudogenes, as are both core antenna protein-
coding genes psbB and psbC. The other pseudogenes of
photosystem II subunits are psbK and psbM that are in-
volved in the oxidation of water and stability of the photo-
system (Blankenship 2002). The cytochrome b6f complex
is intimately involved with noncyclic electron flow

Table 1
Genes Present, Genes Absent, and Pseudogenes in Aneura mirabilis and Epifagus virginiana Compared with Nicotiana
tabacum and Marchantia polymorpha, Respectively

E. virginiana Compared with N. tabacum A. mirabilis Compared with M. polymorpha

Gene Present
Gene Absent or
Pseudogene (w)

Gene Absent or
Pseudogene (w) Gene Present

Photosynthesis
Photosystem I psaA, B, C, I, J wpsaA, wB psaC, I, J, M

Photosystem II
wpsbA, wB, C, D, E, F, H,

I, J, K, L, M wpsbB, wC, wD, wE, wK
psbA, F, H, I, J, L, M, N,

T, Z
Cytochrome b6f petA, B, D, G wpetA, wB petN, L, G, D
ATP synthase watpA, wB, E, F, H, I atpI, H, F, A, B, E
Rubisco wrbcL rbcL

Chlororespiration
ndhA, wB, C, D, E, F, G,

H, I, J, K
ndhA, wB, wC, wD, wE,

wF, G, H, I wJ, K
Gene expression
rRNA 16S, 23S, 4.5S, 5S 16S, 23S, 4.5S, 5S
Ribosomal protein rps2, 3, 4, 7, 8, 11, 14, 18,

19; rpl2, 16, 20, 33, 36
rps15, 16, w14; rpl22,

23, 32
rps12, 7, 2, 14, 4, 18, 11,

8, 3, 19, 15; rpl33, 20,
36, 14, 16, 22, 2, 23,
21, 32

Transfer RNA DGUC, EUUC, FGAA,
HGUG, ICAU, LCAA,
LUAG, MCAU, NGUU,
PUGG, QUUG, RACG,
SGCU, SUGA, WCCA,
YGUA, fMCAU

wAUGC, wCGCA, GGCC,
GUCC, wIGAU, KUUU,
LUAA, wRUCU, wSGGA,
TGGU, TUGU, VGAC,
VUAC

AUGC, CGCA, DGUC,
EUUC, FGAA, GGCC,
GUCC, HGUG, ICAU,
IGAU, KUUU, LCAA,
LUAA, LUAG, MCAU,
NGUU, PUGG, QUUG,
RUCU, RACG, RCCG,
SGCU, SGGA, SUGA,
TUGU, TGGU, VUAC,
VGAC, WCCA, YGUA,
fMCAU

RNA polymerase wrpoA, B, C1, C2 rpoA, B, C1, C2
Maturase matK matK
Initiation factor infA infA

Other protein-coding
genes clpP, accD, ycf2, ycf1

ORF29, 31, 34, 62, 168,
184, 229, 313

wycf3, wccsA, wcysA,
wcysT

ycf12, chlB, ycf2, accD,
ycf4, cemA, clpP, ycf1,
chlN, chlL
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(Blankenship 2002), a process integral to oxygenic photo-
synthesis. This complex is composed of subunits encoded
by the pet genes. Both of the major subunits of this com-
plex, petA and petB, coding for cytochrome f and b6, re-
spectively, are pseudogenes in A. mirabilis. The other
major subunit, the Rieske protein, is encoded by the nuclear
petC gene; detection and sequencing of this gene from the
nucleus is required to determine whether this gene has also
lost its functionality in A. mirabilis, as is the case with other
nuclear-encoded genes whose products are targeted to the
plastid. Furthermore, the gene controlling heme attachment
to cytochrome c, ccsA, which is also involved in noncyclic
electron transport (Stoebe et al. 1998), is a pseudogene.
With the core reaction centers of both photosystems disrup-
ted, in addition to the more extensive disruption of photo-
system II and electron flow between the photosystems, it
appears that the selective constraints on the genetic photo-
synthetic apparatus have been relaxed.

Chlororespiratory genes are the most affected of any
functional category in A. mirabilis, with the partial or com-
plete loss of all genes. These genes were initially named as
chlororespiratory genes based on their sequence similarity
with mitochondrial respiration genes (Wakasugi et al.
1994). The 11 ndh genes of the chloroplast encode subunits
of the reduced form of nicotinamide adenine dinucleotide–
plastoquinone oxidoreductase complex, thought to reduce
photooxidative stress, which occurs when high light inten-
sities cause the capacity of the photosynthetic apparatus to
be exceeded, resulting in the production of damaging reac-
tive oxygen species (Quiles 2006). Bungard (2004) reviews
the evidence that suggests that these genes are lost early and
easily in the evolution of a nonphotosynthetic life history.
Cuscuta reflexa, a holoparasitic plant in the Convovula-
ceae, appears to have an intact chloroplast genome with
the exception of the functional loss of all ndh genes
(Haberhausen and Zetsche 1994; Funk et al. 2007). The loss
of these genes, despite variation in the amount of overall
plastid genome reduction, occurs in other holoparisitic
plants surveyed thus far (dePamphilis and Palmer 1990;
Delavault et al. 1996; Funk et al. 2007). Interestingly,
the chlororespiratory genes have been lost in a photo-
synthetic plant: P. thunbergii (Wakasugi et al. 1994), sug-
gesting that another mechanism, perhaps anatomical or
physiological, is in place to reduce photooxidative stress
or that these genes have been transferred to the nucleus. Un-
like P. thunbergii, there is no evidence that A. mirabilis is
tolerant of high light intensities, suggesting that the loss of
ndh genes in the latter is likely due to the lack of photoox-
idative stress in the absence of photosynthesis. The chlor-
orespiratory gene ndhF, a truncated pseudogene in A.
mirabilis, is a pseudogene in several species of a subfamily
of orchids, the Epidendroideae (Neyland and Urbatsch
1996). Although these orchids are free living, they do rely
extensively on fungal interaction for at least part of their life
history (Bungard 2004). Furthermore, Chang et al. (2006)
reported the loss of 3 ndh genes (ndhA, ndhF, and ndhH)
from the orchid Phalaenopsis aphrodite. The remaining 8
ndh genes were reported to be pseudogenes. If chlorores-
piratory genes are lost in the early stages of a life-history
shift toward heterotrophy, before the complete loss of pho-
tosynthesis, then a plant that has recently become fully my-

coheterotrophic might display a pattern of gene loss similar
to A. mirabilis: extensive loss of ndh genes with only min-
imal loss of other bioenergetic genes. However, the relative
ease with which these genes are discarded from the plastid
genome in plants representing the entire spectrum of pho-
tosynthetic capacity, including a nonparasitic plant, raises
the compelling question of why these genes are retained in
the majority of plant lineages.

Of the remaining 4 pseudogenes in the plastid genome
of A. mirabilis, cysA and cysT have a function predicted to
be transport proteins and are found in M. polymorpha and
A. formosae (only cysA) (Kugita et al. 2003) but not in vas-
cular plants or in the moss P. patens (Sugiura et al. 2003).
Their absence from most sequenced land plant plastid ge-
nomes indicates that these genes may not be part of the
minimal complement of genes upon which functional
constraints act, making it unsurprising that they are pseu-
dogenes in A. mirabilis. The loss of ycf3 in A. mirabilis,
but not in photosynthetic plants, suggests that this unknown
protein is linked to photosynthesis.

Despite the deletion, or loss of function, of 25 genes,
the plastid genome of A. mirabilis is remarkably colinear
with its distant relative, M. polymorpha (fig. 2). Further
studies are required to elucidate the phylogenetic signifi-
cance of the psbE–petL inversion. However, this is not
an indication that all liverworts share a conserved gene
order. Inversions may characterize higher level lineages
of plants, such as legumes (Saski et al. 2005) and mosses
(Goffinet et al. 2007). There may be unique gene orders in
groups of liverworts whose plastid genome sequences have
not yet been reconstructed.

When compared with tobacco, the plastid genome of
E. virginiana reveals an elevated number of insertions and
deletions (dePamphilis and Palmer 1990; Wolfe et al.
1992). An accumulation of short deletions may account
for the dramatic reduction in genome size; however, the ab-
sence of the majority of bioenergetic genes makes it diffi-
cult to observe this pattern in either the LSC or the SSC
regions. An unprecedented amount of the plastid genome
sequence of A. mirabilis is occupied by pseudogenes, which
may allow for a closer observation of the pattern of genome
decay in bioenergetic genes. Of the 71,536 bp of coding
sequence in the genome, pseudogenes account for
20.36% of the sequence ‘‘space’’ and are annotated as such
due in large part to short insertions and deletions that dis-
rupt the reading frame. Disregarding the ndh genes, which
are generally either lost entirely or severely truncated, 11
short (,35 bp) deletions and 7 short insertions (when com-
pared with M. polymorpha using P. patens as the outgroup)
account for the observed functional loss in all but 2 (psbK
and cysT) of the observed pseudogenes. The disruption of
the reading frame in these genes does not seem to co-occur
with an increase in sequence divergence, as evidenced by
high sequence identity between A. mirabilis and M. poly-
morpha. For example, petA, psaB, psbB, and psbC have
sequence identities of 79%, 84%, 82% and 83%, respec-
tively, when the alignment is adjusted to take indels into
account. These sequence identities are comparable with
those for genes that are conserved both in the nonphotosyn-
thetic liverwort and in E. virginiana (accD, 84%; rps4,
74%). Accumulation of reading frame–disrupting indels,
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perhaps, due to errors in genome replication, may account
for the rapid decay of the plastid genome in parasitic plants.

Aneura mirabilis also displays an unexpectedly high
level of plastid sequence conservation when compared with
M. polymorpha, or even more distantly related land plants,
as shown in figure 3. Despite the functional losses of several
genes in A. mirabilis, some regions of the genome are re-
markably conserved given their bioenergetic functions—
for example, atpB, rbcL, and atpA, which are indicated
by asterisks in figure 3. Some of this conservation may
be due to evolutionary constraints on portions of the ge-
nome required for functions apart from photosynthesis.
A transcriptionally active plastid is maintained in most par-
asitic angiosperms, and in the case of E. virginiana, nuclear
gene products are targeted to the plastid (Bungard 2004).
Some biosynthetic functions, such as the production of fatty
acids (dePamphilis and Palmer 1990; Schnurr et al. 2002),
may be carried out in the plastid despite not having a role in
photosynthesis. However, the intact portions of the genome
may simply be due to a recent shift to heterotrophism in A.
mirabilis. Given the loss of most bioenergetic genes, in-
cluding atpB, atpA, and rbcL, from E. virginiana, the latter
explanation may be preferred.

Two genomic regions present a striking pattern in fig-
ure 3. Box C corresponds to chlB and box E corresponds to
chlN and chlL. The former appears to be highly conserved
across all nonangiosperm embryophytes, and the latter
appears to be highly conserved, in part, across the
same groups of plants. These genes encode 3 subunits
of light-independent protochlorophyllide oxidoreductase
(Armstrong 1998) that allows photosynthetic organisms
to synthesize chlorophyll in the dark. Angiosperms are un-
able to produce chlorophyll if grown in the dark, which is
consistent with the absence of these genes in flowering
plants (Kusumi et al. 2006). Light-dependent chlorophyll
synthesis (encoded by the nuclear por gene) may be more
important than light-independent chlorophyll synthesis, as
suggested by the absence of these genes in Psilotum nudum,
Welwitschia mirabilis, some algae, and the functional loss
in 4 species of Thuja (Kusumi et al. 2006). Though A. mir-
abilis is an albino liverwort, the shoot calyptra that protects
the developing sporophyte and the spores themselves take
on a greenish tint. However, A. mirabilis develops in the
absence of light and must therefore rely on light-indepen-
dent chlorophyll synthesis, and subsequently the chl genes,
to produce the observed pigment. Sequence identity of chl
sequences between A. mirabilis and the distantly related M.
polymorpha (35) are 82%, 81%, and 78% for chlB, chlL,
and chlN, respectively, suggesting that selection may act to
retain these genes in the nonphotosynthetic liverwort. The
role of chlorophyll in the underground liverwort is unclear,
though sporophytes produced in the laboratory appear to
grow toward the surface of the overlying vegetation, sug-
gesting that there may be a period in its life history where it
is exposed to light.

Bidartondo (2005) describes the study of mycorrhizal
cheaters like A. mirabilis as a field in its ‘‘infancy,’’ and
much of our understanding of plastid genome evolution
in nonphotosynthetic plants is limited to the angiosperm
families Orobanchaceae and Convovulaceae, which pos-
sess strictly parasitic plants rather than mycoheterotrophs.

This study presents the first plastid genome sequence of
a mycoheterotroph, the first of a nonangiosperm nonphoto-
synthetic plant, and only the second plastid sequence of
a liverwort. Functional gene losses from the plastid are
consistent with predictions based on plastid evolution in
holoparasitic angiosperms, suggesting that genome evolu-
tion under the relaxation of photosynthesis-mediated con-
straints follows broad universal patterns, rather than being
lineage specific.

Supplementary Material

The GenBank accession number for this study is
EU043314.
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