Towards a catalog of pome tree architecture genes: the draft

'd'Anjou' genome (Pyrus communis L.)

Innovating towards architecture genes in pear

Huiting Zhang ${ }^{1,2}$, Eric K. Wafula ${ }^{\mathbf{3}}$, Jon Eilers ${ }^{1}$, Alex E. Harkess ${ }^{4,5}$, Paula E. Ralph ${ }^{\mathbf{3}}$, Prakash Raj
Timilsena ${ }^{3}$, Claude W. dePamphilis ${ }^{3}$, Jessica M. Waite ${ }^{1}$, Loren A. Honaas ${ }^{1 *}$
1. USDA, ARS, Tree Fruit Research Laboratory, Wenatchee, WA, United States 98801
2. Department of Horticulture, Washington State University, Pullman, WA, United States 99163
3. Department of Biology, The Pennsylvania State University, University Park, PA, United States 16802
4. College of Agriculture, Auburn University, Auburn, AL, United States 36849
5. HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States 35806
Email addresses:
Huiting Zhang: huiting.zhang@wsu.edu ; Eric K. Wafula: ekw10@psu.edu ; Jon Eilers:
jon.eilers@usda.gov ; Alex E. Harkess: aharkess@hudsonalpha.org ; Paula E. Ralph: per125@psu.edu ;
Prakash Raj Timilsena: prt119@psu.edu; Claude W. dePamphilis: cwd3@ psu.edu ; Jessica M. Waite:
jessica.waite@usda.gov ; Loren A. Honaas: loren.honaas@usda.gov
* Corresponding author:
Loren A. Honaas
Tree Fruit Research Laboratory, USDA-ARS, 1104 N. Western Ave, Wenatchee, WA 98801
Telephone: 509-664-2280 x 211; Mobile: 509-433-1143; Fax: 509-664-2287

Abstract

The rapid development of sequencing technologies has led to a deeper understanding of horticultural plant genomes. However, experimental evidence connecting genes to important agronomic traits is still lacking in most non-model organisms. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a major hurdle in developing new cultivars with desirable architecture, such as dwarfing rootstocks in European pear (Pyrus communis). Further, the quality and content of genomes vary widely. Therefore, it can be challenging to curate a list of genes with high-confidence gene models across reference genomes. This is often an important first step towards identifying key genetic factors for important traits. Here we present a draft genome of P. communis 'd'Anjou' and an improved assembly of the latest P. communis 'Bartlett' genome. To study gene families involved in tree architecture in European pear and other rosaceous species, we developed a workflow using a collection of bioinformatic tools towards curation of gene families of interest across genomes. This lays the groundwork for future functional studies in pear tree architecture. Importantly, our workflow can be easily adopted for other plant genomes and gene families of interest.

Introduction

Advancements in plant genome sequencing and assembly have vigorously promoted research in non-model organisms. In horticultural species, new genome sequences are being released every month ${ }^{1-6}$. These genomes have broadened our understanding of targeted cultivars and provided fundamental genomic resources for molecular breeding and more in-depth studies of economically important crop traits such as those involved in plant architecture. Although many
gene families have been identified as important for architectural traits, such as dwarfing, weeping, and columnar growth ${ }^{7}$, the study of these genes and their functionality in new species is still hampered by inaccurate information about their gene models or domain structures, and the frequent lack of 1:1 orthology between related genes of different study species. Sequencing and annotating a diversity of related genomes are crucial steps for obtaining this level of information.

Crops, most of which have gone through more than ten thousand years of domestication to meet human requirements, have a wide diversity in forms, sometimes even within the same species ${ }^{8}$. One such example is in the Brassica species, where B. rapa encompasses morphologically diverse vegetables such as Chinese cabbage, turnips, and mizuna; and cabbage, stem kale, and Brussels sprouts are the same biological species, B. oleracea. Therefore, a single reference genome does not represent the complex genome landscape, or pan-genome, for a single crop species. To understand the genetic basis of the diverse Brassica morphotypes, many attempts have been made to explore the genomes of Brassica ${ }^{8-12}$. In one of those attempts, genomes from 199 B. rapa and 119 B. oleracea accessions were sequenced and analyzed using a comparative genomic framework ${ }^{10,12}$. Genomic selection signals and candidate genes were identified for traits associated with leaf-heading and tuber-forming morphotypes. Compared to Brassica, pome fruits may not appear to have as much diversity in their vegetative appearance, but they do have great diversity in terms of fruit quality, rootstock growth and performance, and post-harvest physiology. However, genome studies and pan-genome scale investigations in pome fruits are still in their infancy. In cultivated apple (Malus domestica), genomes of three different cultivars ${ }^{13-16}$ have been published, providing resources to study: 1) small (SNPs and small InDels) and large scale (chromosome rearrangements) differences that can help explain cultivar
diversity, and 2) gene content differences that may contribute to cultivar specific traits. However, genomic resources for European pear (Pyrus communis) cultivars are limited to just two published genomes ${ }^{17,18}$ from a single cultivar, 'Bartlett'. More European pear genomes will afford new perspectives that help us understand shared and unique traits for important cultivars in Pyrus, as well as other Rosaceae.

Besides understanding large scale genomic characteristics, new genomes also provide rich resources for reverse genetic studies ${ }^{19,20}$. To obtain the actual sequence of a target gene, reverse genetic approaches in the pre-genome era relied on sequence and domain homology and technologies such as RACE $P C R^{21}$, which could be challenging and time consuming. Alternatively, in species with high-quality reference genomes, the annotation is generally considered to contain all the genes and target genes could ideally be identified with a sequence similarity search (i.e., BLAST). However, reports of annotation errors, such as imperfect gene models and missing functional genes are very common ${ }^{22,23,24}$. Another complicating factor is that duplication events (i.e., whole genome duplication, regional tandem duplication) and polyploidy occur in the majority of flowering plants, including most crop species, posing substantial challenges to genome assembly and annotation ${ }^{25}$. Moreover, instances of neofunctionalization and subfunctionalization occur frequently following duplication events ${ }^{26}$, which sometimes will result in large and complex gene families ${ }^{27,28}$. Therefore, a one-to-one relationship between a gene in a model organism and its ortholog in other plant species, or even between closely related species and varieties, is rare ${ }^{29}$. Without understanding the orthology and paralogy between members of a given gene family, it is difficult to translate knowledge of a gene in a model organism to another species of interest.

In the present study, we assembled a draft genome for the European pear cultivar 'd'Anjou', improved the current 'Bartlett' assembly (i.e., Bartlett.DH_V2), and developed a workflow that allows highly efficient target gene identification in any plant genome of interest. We used our workflow to curate and improve gene models for architecture-related genes from both the polished Bartlett.DH_v2 and the d'Anjou genomes. Importantly, we recovered many genes that were missing from gene families of interest (50 genes in the cultivar 'Bartlett') and corrected errors in others across the genus Pyrus. This work demonstrates that the integration of comparative genomics and phylogenomics can facilitate and enhance gene annotation, and thus gene discovery, in important plant reference genomes.

Results

The draft d'Anjou genome

Genome assembly

We generated approximately 134 million paired-end reads from Illumina HiSeq and a total of 1,054,992 PacBio continuous long reads (CLR) with a read length N 50 of 20 Kb , providing an estimated 67 -fold and 21 -fold coverage respectively of the expected 600 Mb Pyrus communis genome ${ }^{18}$. Additionally, approximately 468 million 2×150 bp paired reads (~ 234-fold coverage) with an estimated mean molecule length (linked-reads) of 20 kb were generated using 10x Genomics Chromium Technology (Supplementary Table 1). The final meta-assembly, generated with a combination of the three datasets, contains 5,800 scaffolds with a N 50 of 358 Kb (Table 1). The cleaned contigs and scaffolds were ordered and oriented into 17 pseudochromosomes guided by the reference genome, Pyrus communis 'Bartlett.DH_v2' ${ }^{17}$.

Next, we compared the d'Anjou meta-assembly to two published reference assemblies of Bartlett ${ }^{17,18}$ to assess assembly contiguity, completeness, and structural accuracy. The Benchmarking Universal Single-Copy Ortholog (BUSCO) ${ }^{30}$ analysis showed that the d'Anjou genome captured 96.6% complete genes in the Embryophyta gene sets, comparable to the reference genomes (Table 1, Supplementary Table 2). Furthermore, synteny comparisons between the draft d'Anjou genome and the reference Bartlett.DH_v2 genome showed high collinearities at both whole-genome and chromosomal levels (Fig. 1a and Supplementary Fig. 1).

Annotation

Combining information such as de novo transcriptome assembly, homologous proteins of closely related species, and protein-coding gene annotations from the two Bartlett genomes, we identified a total of 45,981 protein coding genes in d'Anjou (Table 1). Of those putative genes 76.63% were annotated with functional domains from Pfam 31 and the remaining are supported by annotation evidence, primarily d'Anjou RNA-Seq reconstructed transcript ${ }^{32}$. These results indicate that we captured a large majority of the gene space in the d'Anjou genome. This affords a range of analyses including gene and gene family characterization, plus global-scale comparisons with other Rosaceae including the 'Bartlett' cultivar.

Comparison among three European pear genomes

To study the shared and genotype-specific genes among the three European pear genomes, we constructed 25,511 protein clusters, comprising 77.71% of all the genes. While numbers of predicted genes from the Bartlett_v1 and d'Anjou genomes may be overestimated due to the
presence of alternative haplotype segments in the assembly caused by high heterozygosity ${ }^{17}$, this should have very little effect on orthogroup circumscription. Further, the process of creating a double haploid reduces genome heterozygosity, but should retain estimates of orthogroup content. Hence, we formulated the following hypotheses: 1) a large majority of gene families are shared by all three genotypes; 2) few genotype-specific gene families are present in each genome; 3) the commercial 'Bartlett' genotype and the double haploid "Bartlett' genotype (roughly version 1.0 and 2.0 of this genome, respectively) should have virtually identical gene family circumscription; and 4) we should detect very few gene families that are unique to either 'Bartlett' genome and shared with 'd'Anjou'. The protein clustering analysis results (Table 1, Fig. 1b) support our hypotheses 1 and $2: 65.60 \%$ of the orthogroups contain genes from all three genotypes and only 0.12% of the orthogroups are species-specific. However, among the 8,744 orthogroups containing genes from two genotypes, more than half (55.11\%) are shared between d'Anjou and Bartlett_v1, 18.10% are shared by d'Anjou_v1 and Bartlett.DH_v2, and only 26.80% are shared between the two Bartlett genomes, which does not support hypotheses 3 and 4.

To better understand why these hypotheses lacked support, we took a broader look at gene family content by comparing a collection of Rosaceae genomes, including the pear genomes in question. We assigned all the predicted protein coding genes from genomes of interest ${ }^{13-15,17,18}$ to orthogroups constructed with a 26 -genome scaffold, covering most of the major lineages of land plants (supplementary Fig. 2). Out of the 18,110 orthogroups from this database, Prunus persica, a rosaceous species included in the genome scaffold, has representative genes in 10,290 orthogroups. Genes from most apple and pear genomes (Bartlett_v1, d'Anjou_v1, Malus
domestica HFTH_v1.0, M. domestica GDDH13_v1.1, M. domestica Gala_v1.0, M.
sieversii_v1.0, M. sylvestris_v1.0) are present in more than 9,800 orthogroups, however, genes from Bartlett.DH_v2 were only found in 9,688 orthogroups (Table $1 \&$ Supplementary Table 3). These results suggest there are many genes not annotated in the Bartlett.DH_v2 genome.

Genome-Wide identification of selected architecture genes

A selection of architecture genes

With this new comparative genomic information, our next steps were two-fold: first, to leverage information from the three European pear genomes and other available Rosaceae genomes, to identify and improve a set of tree architecture-related gene models of interest, and second, to use these architecture gene families as a test case to investigate potential issues in the Bartlett.DH_v2 genome. Many aspects of tree architecture are important for improving pear growth and maintenance, harvest, ripening, tree size and orchard modernization, disease resistance, and soil microbiome interaction. Traits of interest include dwarfing and dwarfism, root system architecture traits, and branching and branch growth. We selected key gene families known to be involved (Table 2) ${ }^{33-64}$, particularly those that have been previously shown to influence architectural traits in fruit trees. The identification of genes within these families, as well as their genomic locations, correct gene models, and domain conservation, is an important early step in testing and understanding their relationships and functions.

Overview of the gene identification workflow

Here, we developed a high throughput workflow (Fig. 2), leveraging a subset of the best Rosaceae plant genomes, and a phylogenomic perspective to efficiently and accurately generate
lists of genes in gene families of interest and phylogenetic relationships of genes from different plant lineages. Our workflow, consisting of three main steps, implemented various functions from PlantTribes ${ }^{65}$ (https://github.com/dePamphilis/PlantTribes) and other software ${ }^{66,67}$ for targeted gene annotation.

Step 1-An initial gene list and preliminary phylogenies
In Step 1, representative plant architecture genes obtained from the literature were assigned into orthogroups based on sequence similarity, giving us 22 orthogroups of interest (Supplementary Tables 4-5. Note that OG12636 is a monocot-specific orthogroup, thus not included in the downstream analysis of this section). In parallel, we classified all the genes annotated from 14 Rosaceae genomes (Supplementary Fig. 2) into the same database. Next, Rosaceae genes assigned into the 21 orthogroups were integrated with sequences from the 26 scaffolding species for multiple sequence alignments, which were used to infer phylogeny. At the end of this step, we obtained our initial list of genes in each orthogroup and the phylogenetic relationships of each gene family.

After examining the 21 orthogroups, we identified 64, 105, 94, and 53 genes from Prunus persica, Gala_v1, d'Anjou, and Bartlett.DH_v2, respectively. A whole genome duplication (WGD) event occurred in the common ancestor of Malus and Pyrus ${ }^{14}$, but was not shared with Prunus. Therefore, we expect to see an approximate 1:2 ratio in gene numbers in most cases, which explains fewer genes in Prunus compared to Gala_v1 and d'Anjou. However, the low gene count in Bartlett.DH_v2 was unexpected. For instance, we observed a clade within a PIN orthogroup (OG1145) comprised of short PIN genes ${ }^{38}$, which seemed to lack genes from the

Bartlett.DH_v2 genome altogether (Fig. 3a). One gene copy is found in Prunus and Rosoideae species, and two copies are found in most of the Maleae species, but none were identified in Bartlett.DH_v2. In addition, in the four genomes mentioned above, we found a number of problematic genes (Supplementary Table 6), for example genes that appeared shorter than all other orthologs or contained unexpected indels likely due to assembly or annotation errors.

Step 2 and 3 -Iterative reannotation of problematic gene models

Inaccurate and missing gene models are common in any genome, especially in the early annotation versions ${ }^{23,24}$. In model organisms, such as human, mouse (https://www.gencodegenes.org/), and Arabidopsis (https://www.arabidopsis.org/), gene annotations are continuously being improved using experimental evidence, improved data types (e.g. full-length RNA molecule sequencing), and both manual and computational curation. Building a better genome assembly is another way to detect additional genes. For instance, the BUSCO completeness score increased from 86.7% in the initial 'Golden Delicious' apple genome ${ }^{16}$ to 94.9% in the higher-quality GDDH13 genome ${ }^{15}$, indicating that the latter genome captured approximately 120 more conserved single-copy genes. Hence, we hypothesized that the potentially missing and problematic gene models we observed in the two European pears could be improved by: 1) using additional gene annotation approaches; and 2) searching against improved genome assemblies.

To test whether further gene annotation would improve problematic gene models, we moved forward to Step 2 of our workflow, using results from Step 1 as inputs. For each orthogroup containing problematic European pear genes (Supplementary Table 6), we used a subset of high-
quality gene models from Rosids identified in Step 1 as inputs and re-annotated these gene families in the two pear genomes. After using a combination of annotation softwares and manual curation, we found a total of 98 genes from the d'Anjou genome, and reduced the number of problematic or incomplete genes from 34 to 3. In Bartlett.DH_v2, we identified 20 complete genes that were not annotated in the original genome and improved the sequences of 7 previously problematic genes, however, the total number of the selected architecture genes (73 genes among which 15 were problematic or incomplete) was still notably lower than that of d'Anjou (98 with 3 incomplete genes) or Gala (105 with 15 being incomplete, see Supplementary Table 6). In Step 3, which involves iterative steps of phylogenetic analysis and targeted gene re-annotation, we added additional information such as the improved d'Anjou genes and RNA-seq datasets as new resources to annotate Bartlett.DH_v2 genes, but found no improvements in identifying unannotated genes or improving problematic models.

Results gathered after the first iteration of Step 3 supported our hypothesis that extra annotation steps could help improve imperfect gene models and identify missing genes in the two targeted European pear genomes. However, there were still about 30 genes potentially missing in Bartlett.DH_v2, which led us to test whether polishing the genome assembly would further improve problematic or missing gene models.

Step 3-Adding Bartlett.DH_v2 genome polishing

The quality of genome assembly is affected by many factors, including sequencing depth, contig contiguity, and post-assembly polishing. Attempts to improve a presumably high-quality genome are time consuming, and may prove useless if the genome is already in good condition. To
initially determine whether polishing the genome assembly would be useful, we first investigated the orthogroups with problematic Bartlett.DH_v2 genes to seek for evidence of assembly derived annotation issues. Indeed, in most cases where we failed to annotate a gene from presumably the correct genomic region, we observed unexpected indels while comparing the Bartlett.DH_v2 genome assembly to other pear genomes (Supplementary Fig. 3 and Supplementary Table 7). Unexpected indels in the Bartlett.DH_v2 genome were associated with incorrect gene models as well. For example, Fig. 3b shows a subset of amino acid sequence alignments for a specific member (Pyrco_BartlettDH_13g21160) of a PIN orthogroup (OG438) comprised of the long PIN genes 38, in which the Bartlett.DH_v2 gene model shared low sequence identity with orthologs from other Maleae species and Prunus. To validate the identity of the problematic gene models, we leveraged RNAseq data from various resources ${ }^{68-73}$ and mapped them to the Bartlett.DH_v2 gene models. In most cases where a conflict was present between the pear consensus, for a given gene of interest, and the Bartlett.DH_v2 gene model, the reads supported the consensus (Fig. 3c). The frequent occurrence of truncated and missing genes in the Bartlett.DH_v2 genome may be caused by assembly errors (e.g., base call errors, adapter contamination) that create erroneous open reading frames. This observation provided us with the first piece of evidence that the differences in gene family content observed in the Bartlett.DH_v2 genome may not only be caused by misannotations, but also assembly issues.

To further test whether improvement to the genome assembly would allow us to capture the problematic and missing genes, we polished the Bartlett.DH_v2 genome with Illumina reads from the original publication ${ }^{17}$. We identified 98.40% complete BUSCOs in the polished genome assembly, a 1.90% increase compared to the original assembly (Supplementary Table 2).

Using the polished genome, we reiterated Step 3 of our workflow and annotated a total of 103 genes in our gene families of interest, with only two gene models being incomplete (Supplementary Table 6). This new result doubled the number of genes we identified from the original genome annotation and brought the expected gene number into parity with other pome fruit genomes. This supports our hypothesis that genes were missing due to methodological reasons, and in this case, due to assembly errors.

Curation of a challenging gene family: the IGT family

Some gene families are more complex than others. For example, it is more difficult to study the evolution of resistance (R) genes than most BUSCO genes because the former is comprised of fast-evolving multigene families while the latter are universally conserved single-copy gene families. Within the architecture gene families we studied, the IGT family is more challenging than many others because members of this family have relatively low levels of sequence conservation outside of a few conserved domains ${ }^{74}$. Previous reports identified four major clades (LAZY1-like, DRO1-like, TAC1-like, and LAZY5-like) in this gene family ${ }^{34}$. Study of LAZY1 in model species identified 5 conserved regions ${ }^{74}$ (Fig 4c). The same domains are also present in other LAZY1-like and DRO1-like proteins and the first 4 domains are found in TAC1-like proteins across land plants ${ }^{75}$. LAZY5-like, the function of which is largely unknown, has only domains I and V. Early research of the TAC1-like and LAZY1-like IGT genes identified these genes as grass-specific ${ }^{76,77}$, as BLAST searches failed to find homologs in other plant lineages.

Using Arabidopsis and rice IGT genes as queries, our workflow identified five orthogroups (Supplementary Table 4), containing all the pre-characterized IGT genes in angiosperms. The
phylogeny constructed with these five orthogroups largely supported previous classification of the four clades ${ }^{34}$, and provided more information regarding the evolutionary history of this gene family (Fig. 4a and Supplementary Fig. 4). The TAC1-like clade, which is sister to the others, is divided into two monophyletic groups; one contains only monocots while the other has representatives from all the other angiosperm lineages. The LAZY1-like and LAZY5-like clades form one large monophyletic group, which is sister to the DRO1-like clade. Within Rosaceae, a near 1:2 ratio was expected between peach and pear due to the WGD in the common ancestor of the Maleaes. Compared to the six known peach $I G T$ genes 34, we found 11 orthologs in Bartlett.DH_v2 (including 1 short gene, Pycro_BartlettDH_LAZY.Chr10, caused by an unexpected premature stop codon) and 9 in d'Anjou (Pycro_Danjou_DRO.Chr2 and Pycro_Danjou_LAZY.Chr10 failed to be annotated due to missing information in the genome). The resulting phylogeny (Fig. 4a) shows that we have now identified most of the expected IGT genes in European pears.

Besides low sequence similarity, $I G T$ genes also have unique intron-exon arrangements, which are conserved across Arabidopsis and a few other plant species ${ }^{34,74,78}$. These genes all contain 5 exons, but unlike most genes, the first exon only comprises six nucleotides and the last exon contains ~ 20 nucleotides. Annotation of short exons, especially when transcriptome evidence is limited, can be very challenging and skipping such exons could cause problems in gene discovery ${ }^{79-81}$. For instance, the annotation of AtAPC11 (At3g05870) was inaccurate until Guo and Liu identified a single-nucleotide exon in this gene ${ }^{80}$.

To determine whether we captured the correct $I G T$ gene models in the targeted genomes, we investigated the protein sequence alignments and gene features. In the original annotation, only three gene models (Pyrco_BartlettDH_16g10510, Pyrco_BartlettDH_07g15250, Pyrco_DAnjou_Chr7v0.1_17442.1) have the correct intron-exon combination and the expected domains. In the iterative re-annotation steps of our workflow, we identified 6 additional accurate gene models leveraging sequence orthology and transcriptome evidence ${ }^{68-73}$. We further investigated all the sequences we identified as $I G T$ genes, seeking the presence or absence of the expected domain features. However, even among gene models from the best annotated genomes used to construct the 26Gv2.0 database, only 45.16% (56/124) have the expected domain features (Indicated with an * next to gene names in Fig. 4a) (LAZY5-like was not taken into consideration due to its unique structure). In most cases, although the signature IGT domain (II) is correctly identified in the genes, domains I and V are usually missing or incorrect, likely due to mis-annotation of the first and last short exons. In Rosaceae, besides Bartlett.DH_v2 and d'Anjou, 34.38% (33/96) had the expected domains (Fig. 4a). This finding motivated us to manually investigate the targeted genomes to annotate the IGT genes. Using the correct gene models as reference, plus a careful manual curation, we were able to annotate 19 complete gene models of 20 expected IGT genes from the two targeted pear genomes (Figs. 4 b and 4 c).

Discussion

A second European pear cultivar genome from 'd'Anjou' provided additional insights into gene families across Rosaceae. By leveraging perspectives from comparative genomics and phylogenomics, we developed a high-throughput workflow using a collection of bioinformatic
tools that takes a list of genes of interest from the literature and genomes of interest as input, and produces a curated list of the targeted genes in the query genomes.

In the case study presented here, candidate genes from 16 plant architecture-related gene families were identified from 14 Rosaceae genomes. The study of gene families consists primarily of two initial parts: first, identification of all the members in these families, and second, investigation of their phylogenetic relationships. Many attempts ${ }^{82-84}$ to identify genes of interest from a genome have relied solely on a BLAST search querying a homolog from a model organism, which may be distantly related. However, such a method is insufficient in identifying all members of a large complex gene family or a fast-evolving and highly-divergent family, such as the IGT genes. They may also incorrectly include genes in a gene family based only on one or a few highly conserved regions that are insufficient for gene family membership. Compared to a BLAST-only approach, the gene classification process in our workflow used a combination of BLAST and HMMER search of an objectively pre-classified gene family scaffold, which provides a better result by taking into consideration both sensitivity and specificity ${ }^{65}$. This allowed us to efficiently identify even very challenging genes. Moreover, phylogenetic relationships revealed by a small number of taxa, for instance using only one species of interest and one model organism, can be inaccurate. For example, in our phylogenetic analysis with rich taxon sampling, PIN5-1 and PIN5-2 from Pyrus bretschneideri are sisters to all other PINs (Supplementary Fig. 5), challenging the phylogenetic relationship inferred with PINs only from P. bretschneideri and Arabidopsis thaliana ${ }^{61}$.

The iterative quality control steps in the workflow helped identify problems that existed in certain gene models and provided hints about where to make targeted improvements to important Pyrus genomic resources. The highly contiguous assembly of Bartlett.DH_v2 provided a valuable reference to anchor the shorter scaffolds from d'Anjou, which is essential for a good annotation. On the other hand, the perspective afforded by the d'Anjou genome led us to examine the Bartlett.DH_v2 genome assembly further. We developed and tested hypotheses regarding unexpected gene annotation patterns in the two targeted European pear genomes among various Maleae species and cultivars. This led to a polished assembly and improved annotations that allowed us to curate a high confidence list of candidate genes and gene models for downstream analyses. By adding targeted iterations of genome assembly and annotation, we now have a better starting point for reverse genetic analyses and understanding functionality of architecture-related genes in pears.

The challenges we encountered as we laid the groundwork for reverse genetics studies to understand pear architecture genes, and the approaches we took to evaluate and tackle these challenges, reinforce the idea that genome assembly and annotation are iterative processes. We found that relating gene accession IDs and inconsistent gene names back to gene sequences in various databases was often difficult and time consuming. Objective, global-scale gene classification, as we used here via PlantTribes ${ }^{65,85}$, can help researchers work across genomes and among various genome resources. Further, guidance from consortia such as AgBioData ${ }^{86}$ is helping facilitate work such as we have described here that includes the acquisition and analysis of genome-scale data. Our starting point for understanding putative architecture genes in pear was with genes of interest from several plant species - an approach that many researchers will
find familiar. With genes of interest in hand, our workflow provides a comparative genome approach to efficiently identify, investigate, and then improve and/or validate genes of interest across genomes and genome resources.

Materials and Methods

Plant materials and sequencing

The 'd'Anjou' plants were purchased from Van Well's nursery in East Wenatchee, WA, USA and grown in the USDA ARS greenhouse \#6 at Wenatchee, WA, USA. Fresh leaves ($\sim 1.5 \mathrm{~g}$) from one 'd'Anjou' plant were flash frozen and used for DNA extraction. A CTAB isolation protocol ${ }^{87}$ was used to generate high-molecular-weight genomic DNA with the following modifications: the extraction was performed large scale in 100 ml of extraction buffer in a 250 ml Nalgene centrifuge bottle; the isopropanol precipitation was performed at room temperature (~ 5 minutes) followed immediately by centrifugation; after a 15-minute incubation in the first pellet wash solution, the pellet was transferred to a 50 ml centrifugation tube via sterile glass hook before performing the second pellet wash; following the second pellet wash, centrifugation and air drying, the pellet was resuspended in 2 ml TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and allowed to resuspend at $4{ }^{\circ} \mathrm{C}$ overnight. The concentration of the DNA was measured by a Qubit 2.0 fluorometer (Invitrogen) and 50 ug DNA was digested with RNase A (Qiagen, final concentration $10 \mathrm{ug} / \mathrm{ml}, 37^{\circ} \mathrm{C}$ for 30 minutes) and then further cleaned up using the PacBio recommended, user-shared gDNA clean-up protocol (https://www.pacb.com/search/?q=user+shared+protocols) performed at large-scale with the DNA sample brought up to 2 ml with TE and all other volumes scaled up accordingly. The final pellet was resuspended in 100 ul TE. The final DNA concentration was measured by Qubit
fluorometer, and 500 ng was loaded onto a PFG (Bio-Rad CHEF) to check the size range. The DNA ranged in size from 15 Kb to 100 Kb with a mean fragment size around 50 Kb . The purity of the DNA as measured by the NanoDrop spectrophotometer (ThermoFisher) was 260/280 nm: $1.91 ; 260 / 230 \mathrm{~nm}: 2.51$. Cleaned-up gDNA was sent to the Penn State Genomics Core facility (University Park, PA, USA) for Pacbio and Illumina library construction and sequencing. A total of 10 ug gDNA was used to construct PacBio SMRTbell libraries and sequenced on a PacBio Sequel system. A small subset of the same gDNA was used to make Illumina TruSeq library and was sequenced on an Illumina HiSeq 2500 platform. In addition, 4 ug of the same gDNA was sent to the DNA technologies and Expression Analysis Core Laboratory at UC Davis (Davis, CA, USA) to construct an Illumina 10X Chromium library, which was sequenced on an Illumina NovaSeq 6000 sequencer.

Genome assembly and post-assembly processing

To create the initial backbone assembly of d'Anjou, Canu assembler v2.1.1 ${ }^{88}$ was used to correct and trim PacBio continuous long reads (CLR) followed by a hybrid assembly of Illumina short reads and PacBio CLR with MaSuRCA assembler v3.3.2 ${ }^{89}$. Next, Supernova v2.1.1, the 10x Genomics de novo assembler ${ }^{90}$, was used to assemble linked-reads at five different raw read coverage depths of approximately $50 \mathrm{x}, 59 \mathrm{x}, 67 \mathrm{x}, 78 \mathrm{x}$, and 83 x based on the kmer estimated genome size, and the resulting phased assembly graph was translated to produce two parallel pseudo-haplotype sequence representations of the genome. The Supernova assembler can only handle raw data between 30 - to 85 -fold coverage of the estimated genome size. Therefore, the muti-coverage assemblies provide an opportunity to capture most of the genome represented in the ~ 234-fold coverage sequenced 10x Chromium read data. One of the pseudo-haplotypes at
each of the five coverages was utilized for subsequent meta-assembly construction to improve the backbone assembly using a combination of assembly metrics, including 1) contig and scaffold contiguity (L50), 2) completeness of annotated conserved land plants (embryophyta) single-copy BUSCO genes ${ }^{30}$, and 3) an assembly size closer to the expected d'Anjou haploid genome size. The backbone assembly was incrementally improved by bridging gaps and joining contigs with the Quickmerge program ${ }^{91}$ using contigs from the five primary Supernova assemblies in decreasing order of assembly quality. The resulting meta-assembly at each merging step was only retained if improvement in contiguity, completeness, and assembly size was observed.

Next, the long-distance information of DNA molecules provided in linked-reads was used to correct assembly errors introduced in the meta-assembly during both the de novo and merging steps of the assembly process with Tigmint ${ }^{92}$ and ARCS ${ }^{93}$ algorithms. Tigmint aligns linked reads to an assembly to identify potential errors and breaks assembled sequences at the boundaries of these errors. The assembly is then re-scaffolded into highly contiguous sequences with ARCS utilizing the long-distance information contained in the linked reads. To further improve the d'Anjou meta-assembly, trimmed paired-reads from both the short insert Illumina and 10x Chromium libraries were utilized to iteratively fill gaps between contigs using GapFiller $\mathrm{v} 1.10^{94}$, and correct base errors and local misassemblies with Pilon v1.23 ${ }^{95}$. The genome assembly process is illustrated in Supplementary Fig. 6.

Pseudomolecule construction

Before constructing the d'Anjou nuclear chromosomal-scale pseudomolecules, extraneous DNA sequences present in meta-assembly were identified and excluded (Supplementary Fig. 6).

Megablast searches with e-value < 1e-10 was performed against the NCBI nucleotide collection database (nt), and then the best matching Megablast hits (max_target_seqs = 100) against the NCBI taxonomy database were queried to determine their taxonomic attributions. Assembly sequences with all their best-matching sequences not classified as embryophytes (land plants) were considered contaminants and discarded. A second iteration of Megablast searches of all the remaining sequences (embryophytes) was performed against the NCBI RefSeq plant organelles database to identify chloroplast and mitochondrion sequences and assembly sequences with high similarity (> 80% identity; $>50 \%$ coverage) to plant organelle sequences were discarded ${ }^{27,96}$. Finally, the remaining meta-assembly nuclear contigs and scaffolds were ordered and oriented into chromosomal-scale pseudomolecules with RaGOO^{97} using the European pear, Pyrus communis Bartlett.DH_v2 genome ${ }^{17}$ reference chromosomes (Supplementary Fig. 6).

Assembly validation

Both the contig and scaffold assembly metrics were evaluated in addition to the completeness of universally conserved single-copy genes using the BUSCO land plants (embryophyta) benchmark gene set (Supplementary Table 8). Whole-genome synteny comparison between Bartlett.DH_v2, the chromosome assembly of the Bartlett cultivar, and d'Anjou meta-assembly were evaluated with D-GENIES ${ }^{98}$ using repeat masked (http://www.repeatmasker.org) DNA alignments performed with minimap ${ }^{99}$ for the whole genome and each of the 17 Pyrus communis chromosomes as shown in Fig. 1 and Supplementary Fig. 6, respectively.

Gene prediction

To identify the regions of genomic DNA that encode genes, we first estimated the portion of d'Anjou meta-assembly comprised of repetitive elements suitable for repeat masking prior to protein-coding gene annotation following the protocol described by Campbell et al (2014) ${ }^{100}$. The meta-assembly was first searched using MITE-Hunter ${ }^{101}$ and LTRharvest/ LTRdigest ${ }^{102,103}$ to collect consensus miniature inverted-repeat transposable elements (MITEs) and long terminal repeat retrotransposons (LTRs) respectively. LTRs were filtered to remove false positives and elements with nested insertions and used together with the MITEs to mask the genomes. The unmasked regions of the genomes were then annotated with RepeatModeler (http://www.repeatmasker.org/RepeatModeler) to predict additional de novo repetitive sequences. All collected repetitive sequences were compared to a BLAST database of plant proteins from SwissProt and RefSeq, and sequences with significant hits were excluded from the repeat masking library.

Extensive extrinsic gene annotation homology evidence from RNA-seq and protein were collected to supplement $a b$ initio gene predictions. RNA-Seq evidence included Trinity ${ }^{104} d e$ novo reconstructed transcripts from d'Anjou pear fruit peel and cortex tissues sampled at multiple time points described in our previous study ${ }^{32}$. Protein homology evidence of closely related species were collected from the Genome Database for Rosaceae (GDR), including Malus domestica, Prunus persica, Pyrus betulifolia, Pyrus communis 'Bartlett', Pyrus x bretschneideri, Rosa chinensis, and Rubus occidentalis ${ }^{105}$. The plant model species, Arabidopsis thaliana ${ }^{106}$, was included as well.

Protein-coding gene annotations from the Pyrus communis reference genomes of Bartlett_v1 and Bartlett.DH_v2 were separately transferred (liftovers) to pseudomolecules of d'Anjou metaassembly using the FLO (https://github.com/wurmlab/flo) pipeline based on the UCSC Genome Browser Kent-Toolkit ${ }^{107}$. Next, the MAKER annotation pipeline (release 3.01.02) ${ }^{108}$ was used to update the transferred annotations with evidence data and gene models predicted by ab initio gene finders. Repetitive and low complexity regions of the pseudomolecules were first masked with RepeatMasker in MAKER using the previously described d'Anjou-specific repeat library. MAKER updated transferred annotations with evidence data and predicted additional annotations with Augustus ${ }^{109,110}$ and SNAP ${ }^{111}$ using the d'Anjou training set where evidence suggests a gene. Only predicted gene models supported by annotation evidence, encode a Pfam domain, or both, were retained.

Computation of pear orthogroups

To compare the gene content of the two Pyrus communis cultivars, 'Bartlett' and 'd'Anjou', orthologous and paralogous gene clusters of Bartlett_v1, Bartlett.DH_v2, and d'Anjou were estimated with OrthoFinder version 1.1.5 ${ }^{112}$ for annotated proteins in all the genomes.

Bartlett.DH_v2 genome polishing

To improve the base quality of the publicly available pear reference genome, the Pyrus communis 'Bartlett.DH_v2' assembly was iteratively polished with two rounds of Pilon (v1.24) ${ }^{95}$ using the raw Illumina shotgun reads from the Bartlett.DH_v2 genome projects obtained from the NCBI Short Read Archive (SRA accessions: SRR10030340, SRR10030308), and completeness and accuracy assessed with the BUSCO ${ }^{30}$ embryophyta_odb10 database.

Gene family identification

Coding sequences of candidate genes and their corresponding peptides gleaned from published literature were sorted into pre-computed orthologous gene family clusters of representative 26 genomes from land plants using the both BLASTp ${ }^{113}$ and HMMER hmmscan ${ }^{114}$ sequence search option of the GeneFamilyClassifier tool implemented in the PlantTribes gene family analysis pipeline (https://github.com/dePamphilis/PlantTribes). Classification results, including orthogroup taxa gene counts, corresponding superclusters (super orthogroups) at multiple clustering stringencies, and orthogroup-level annotations from multiple public biological functional databases are reported in Supplementary Table 5.

Gene family analysis

All the tools used in this process are modules from the command line version of PlantTribes software and are processed on SCINet (https://scinet.usda.gov/) with customized scripts. Protein coding genes from 14 Rosaceae species (Fragaria vesca v2.0.a2 ${ }^{115}$, Rosa chinensis old Blush homozygous v2.0 ${ }^{116}$, Rubus occidentalis v3.0 ${ }^{117}$, Prunus avium v1.0.a1 ${ }^{118}$, Malus domestica HFTH v1.0 ${ }^{13}$, M. domestica GDDH13 v1.1 1^{15}, M. domestica Gala v1.0 ${ }^{14}$, M. sieversii v1.0 ${ }^{14}, M$. sylvestris v1.0 ${ }^{14}$, Pyrus communis v1.0 ${ }^{18}$, Pyrus communis Bartlett DH v2.0 ${ }^{17}$, Pyrus ussuriensis x communis v1.0 ${ }^{119}$, Pyrus bretschneideri v1.1 1^{120}, Pyrus communis d’Anjou v0.1) were sorted into orthologous groups with the GeneFamilyClassifier as previously described. For species lacking matching coding sequence file and peptide file, transcripts were processed to predict potential protein coding regions using the TransDecoder ${ }^{121}$ option of AssemblyPostProcessor. A detailed summary of the Rosaceae gene family classification results are in Supplementary Table
3. Sequences classified into the orthogroups of interest (with candidate genes in this study) were integrated with scaffold backbone gene models using the GeneFamilyIntegrator tool. Gene names were modified as shown in Supplementary Table 9 for easier recognition of the species. Amino acid multiple sequence alignments and their corresponding DNA codon alignments were generated by GeneFamilyAligner with the L-INS-i algorithm implemented in MAFFT ${ }^{122}$. Sites present in less than 10% of the aligned DNA sequences were removed with trimAL ${ }^{123}$. Maximum likelihood (ML) phylogenetic trees were estimated from the trimmed DNA alignments using the RAxML algorithm ${ }^{124}$ option in the GeneFamilyPhylogenyBuilder. One hundred bootstrap replicates (unless otherwise indicated) were conducted for each tree to estimate the reliability of the branches. The multiple sequence alignments were visualized in the Geneious R9 software ${ }^{125}$ with Clustal color scheme. The phylogeny was colored with a custom script and visualized with Dendroscope (version 3.7.5) ${ }^{126}$. Gene sequences, alignments, and phylogenies are available in Supplementary File 1-3.

Domain prediction

To estimate domain structures of proteins in each orthogroup, the predicted amino acid sequences (either obtained from public databases or generated by the PlantTribes AssemblyPostProcessor tool) were submitted to interproscan (version 5.44-79.0) ${ }^{127,128}$ on SCINet and searched against all the databases.

Targeted gene family annotation

The following approaches were used in parallel to annotate candidate genes from the original Bartlett.DH_v2, polished Bartlett.DH_v2, and the d'Anjou genome assemblies:

TGFam-finder ${ }^{67}$

The 'RESOURCE.config' and 'PROGRAM_PATH.config' files were generated according to the author's instruction. The two Bartlett.DH_v2 genome assemblies and the d'Anjou_v1 genome were used as the target genomes. Complete protein sequences from apples and pears in the same orthogroup were used as protein for domain identification. Complete protein sequences from other Rosaceae species and Arabidopsis thaliana in the same orthogroup were used as resource proteins for each annotation step. For each orthogroup, Pfam annotations from the InterProScan results were used as TSV for domain identification. For orthogroups without Pfam descriptions, MobiDBLite information was used as TSV for domain identification.

Bitacora ${ }^{66}$

Arabidopsis genes from targeted gene families (orthogroups of interest) were used to generate a multiple sequence alignment and HMM profile using MAFFT ${ }^{122}$ and hmmbuild. The resulting files were then used as input for Bitacora v1.3, running in both genome mode and full mode to identify genes of interest in the original Bartlett.DH_v2 genome.

Manual curation and gene model verification

In cases where both TGFam-Finder and Bitacora failed to predict a full-length gene, the gene model was curated manually.

Curation with orthologous gene models

First, the genomic region containing the target sequence was determined either by the general feature format file (gff) or a BLASTn search using the coding sequence of the target gene or a closely related gene as a query. Next, a genomic fragment containing the target sequence and 3 kb upstream and downstream of the targeted region was extracted. Then, the incomplete transcript(s), predicted exons, and complete gene models from a closely related species were mapped to the extracted genomic region. The final gene model was determined by using the fulllength coding sequence of a closely related gene as a reference.

Curation with RNA-seq read mapping

The gff3 files obtained from Bitacora were loaded into an Apollo docker container (v2.6.3) ${ }^{129}$ for verification of the predicted gene models using expression data. Publicly available RNA-seq data ${ }^{68-73}$ for Pyrus were used as inputs of an RNA-seq aligner, STAR (v2.7.8a) ${ }^{130}$, and alignments were performed with maximum intron size set to 5 kb and default settings. Intronexon structure was compared to the aligned expression data. If there was insufficient RNA-seq coverage from the targeted cultivar, data from other cultivars and Pyrus species were used as supporting evidence. Read mapping results are available in Supplementary File 4-5. Curated gene models from the original Bartlett.DH_v2 were transferred to the polished genome for validation.

Gene model cartoons were generated using the visualize gene structure function in TBtools (v1.09854) ${ }^{131}$. Final gene models and their corresponding chromosomal locations are available in Supplementary File 6-7.

Data Availability

Raw read data of d'Anjou genome sequencing has been deposited at NCBI SRA under Bioproject ID PRJNA762155. Genome assembly and gene prediction of the draft 'd'Anjou' genome, and the polished 'Bartlett.DH_v2' genome assembly have been submitted to the Genome Database for Rosacea (GDR). Supplementary information accompanies the manuscript on the BioRxiv.

Acknowledgements

This work was supported by the Washington Tree Fruit Research Commission project PR-17104 and the Agricultural Research Service in the US Department of Agriculture. The authors would like to acknowledge Heidi Hargarten for maintaining the d'Anjou plant and collecting leaf tissue for sequencing. They also thank Craig Praul at Penn State and Diana Burkart-Waco and Lutz Froenicke at UC Davis for sequencing.

Conflict of interests

The authors declare no conflict of interests.

Author Contributions

HZ, JW, LH conceived and designed the research. PR prepared gDNA for sequencing. HZ, EW, PT, JE, JW, and AH performed the genome assembly and gene family analysis. All authors participated in writing and revising the manuscript.

References

1 Chen, J. et al. A chromosome-scale genome sequence of pitaya (Hylocereus undatus) provides novel insights into the genome evolution and regulation of betalain biosynthesis. Hortic Res. 8, 164 (2021).

2 Wang, J. et al. A high-quality genome assembly of Morinda officinalis, a famous native southern herb in the Lingnan region of southern China. Hortic Res. 8, 135 (2021).

3 Huang, Y. et al. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Hortic Res. 8, 69 (2021).

4 Chen, D. et al. The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. Hortic Res. 8: 121 (2021).
$5 \mathrm{Xu}, \mathrm{X}$. et al. The chromosome-level Stevia genome provides insights into steviol glycoside biosynthesis. Hortic Res. 8: 129 (2021).

6 Wang, P. et al. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Hortic Res. 8: 107 (2021).

7 Hill, J. L. \& Hollender, C. A. Branching out: new insights into the genetic regulation of shoot architecture in trees. Curr Opin Plant Biol. 47: 73-80 (2019).

8 Stansell, Z. \& Björkman, T. From landrace to modern hybrid broccoli: the genomic and morphological domestication syndrome within a diverse B. oleracea collection. Hortic Res. 7: 159 (2020).

9 Stansell, Z. et al. Genotyping-by-sequencing of Brassica oleracea vegetables reveals unique phylogenetic patterns, population structure and domestication footprints. Hortic Res. 5: 38 (2018).

10 Cheng, F. et al. Subgenome parallel selection is associated with morphotype diversification
and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet. 48: 1218-1224 (2016).

11 Mabry, M. E. et al. The evolutionary history of wild, domesticated, and feral Brassica Oleracea (Brassicaceae). Mol Biol Evol. doi:10.1093/molbev/msab183 (2021).

12 Cheng, F. et al. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci Data. 3: 160119 (2016).

13 Zhang, L. et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun. 10: 1494 (2019).

14 Sun, X. et al. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet. 52: 1423-1432 (2020).

15 Daccord, N. et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. 49: 1099-1106 (2017).

16 Velasco, R. et al. The genome of the domesticated apple (Malus \times domestica Borkh.). Nat Genet. 42: 833-839 (2010).

17 Linsmith, G. et al. Pseudo-chromosome-length genome assembly of a double haploid "Bartlett" pear (Pyrus communis L.). Gigascience. 8. doi:10.1093/gigascience/giz138 (2019). 18 Chagné, D. et al. The draft genome sequence of European pear (Pyrus communis L. 'Bartlett'). Plos One. 9: e92644 (2014).

19 Wu , J. et al. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. Bmc Plant Biol. 12: 151 (2012).

20 Tollenaere, R. et al. Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next \square generation sequencing. Plant Biotechnol J. 10: 709-715 (2012).

21 Takos, A. M. et al. Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples. Plant Physiology 142: 1216-1232 (2006).

22 Pertea, M. et al. CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol 19: 208 (2018).

23 Pilkington, S. M. et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. Bmc Genomics 19: 257 (2018).

24 Marx, H. et al. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat Biotechnol. 34: 1198-1205 (2016).

25 Kyriakidou, M., Tai, H. H., Anglin, N. L., Ellis, D., \& Strömvik, M. V. Current strategies of polyploid plant genome sequence assembly. Front Plant Sci. 9: 1660 (2018).

26 Hughes, T. E., Langdale, J. A., \& Kelly, S. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. Genome Res. 24: 1348-1355 (2014).

27 Yoshida, S. et al. Genome sequence of Striga asiatica provides insight into the evolution of plant parasitism. Curr Biol. 29: 3041-3052.e4 (2019).

28 Yang, Z. et al. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol Biol Evol. 32: 767-790 (2015).

29 Xiao, D. et al. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot. 64: 4503-4516 (2013).

30 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., \& Zdobnov, E. M. BUSCO update:
novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. msab199- (2021).

31 Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49: gkaa913(2020).

32 Honaas, L. et al. Transcriptomics of differential ripening in 'd'Anjou' pear (Pyrus communis L.). Front Plant Sci. 12: 609684 (2021).

33 Kwon, M. \& Choe, S. Brassinosteroid biosynthesis and dwarf mutants. J Plant Biol. 48: 1 (2004).

34 Waite, J. M. \& Dardick, C. The roles of the IGT gene family in plant architecture: past, present, and future. Curr Opin Plant Biol. 59: 101983 (2021).

35 Bulley, S. M. et al. Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnol J. 3: 215-223 (2005). 36 Griffiths, J. et al. Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. Plant Cell Online 18: 3399-3414 (2006).

37 Dugardeyn, J. \& Straeten, D. V. D. Ethylene: Fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci. 175: 59-70 (2008).

38 Křeček, P. et al. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 10: 249 (2009).

39 Martín \square Rejano, E. M. et al. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. Physiol Plantarum. 142: 170-178 (2011).
$40 \mathrm{Li}, \mathrm{H} . \mathrm{L}$. et al. Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiol Plant. 34: 235-244 (2012).

41 Chang, L., Ramireddy, E., \& Schmülling, T. Lateral root formation and growth of Arabidopsis is redundantly regulated by cytokinin metabolism and signalling genes. J Exp Bot. 64: 5021-5032 (2013).

42 Dardick, C. et al. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J. 75: 618-630 (2013).

43 Tworkoski, T., Webb, K., \& Callahan, A. Auxin levels and MAX1-4 and TAC1 gene expression in different growth habits of peach. Plant Growth Regul. 77: 279-288 (2015). 44 Hollender, C. A., Hadiarto, T., Srinivasan, C., Scorza, R., \& Dardick, C. A brachytic dwarfism trait $(d w)$ in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c. New Phytol. 210: 227-239 (2016).

45 Ma , Y. et al. Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus \times domestica). Sci Rep-uk. 6: 26719 (2016).
$46 \mathrm{Li}, \mathrm{G}$. et al. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple. Bmc Genomics. 17: 150 (2016).

47 Foster, T. M., McAtee, P. A., Waite, C. N., Boldingh, H. L., \& McGhie, T. K. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Hortic Res. 4: 17009 (2017).

48 Harrison C. J. Auxin transport in the evolution of branching forms. New Phytol. 215: 545551 (2017).

49 Guseman, J. M., Webb, K., Srinivasan, C., \& Dardick, C. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 89: 1093-1105 (2017).
$50 \mathrm{An}, \mathrm{H}$. et al. Dwarfing effect of apple rootstocks is intimately associated with low number of fine roots. Hortscience. 52: 503-512 (2017).

51 An, J. et al. Molecular cloning and functional characterization of MdPIN1 in apple. J Integr Agr. 16: 1103-1111 (2017).

52 Zheng, L. et al. Genome-wide identification and expression analysis of brassinosteroid biosynthesis and metabolism genes regulating apple tree shoot and lateral root growth. J Plant Physiol. 231: 68-85 (2018).

53 Gan, Z. et al. MdPIN1b encodes a putative auxin efflux carrier and has different expression patterns in BC and M9 apple rootstocks. Plant Mol Biol. 96: 353-365 (2018).

54 Zheng, X. et al. MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression. New Phytol. 217: 1086-1098 (2018).

55 Wang, L. et al. The isolation of the IGT family genes in Malus \times domestica and their expressions in four idiotype apple cultivars. Tree Genet Genomes. 14: 46 (2018).

56 Cheng, J. et al. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA \square insensitive dwarf phenotype in peach. Plant Biotechnol J. 17: 1723-1735 (2019).
$57 \mathrm{Li}, \mathrm{C}$. et al. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights. Plant Sci. 285: 1-13 (2019).

58 Zheng, X., Zhang, H., Xiao, Y., Wang, C., \& Tian, Y. Deletion in the promoter of PcPIN-L affects the polar auxin transport in dwarf pear (Pyrus communis L.). Sci Rep-uk. 9: 18645 (2019). 59 Swarup, R. \& Bhosale, R. Developmental roles of $A U X 1 / L A X$ auxin influx carriers in plants. Front Plant Sci. 10: 1306 (2019).

60 Tan, M. et al. Role of cytokinin, strigolactone, and auxin export on outgrowth of axillary buds in apple. Front Plant Sci. 10: 616 (2019).

61 Qi, L. et al. Characterization of the auxin efflux transporter PIN proteins in pear. Plants. 9: 349 (2020).

62 Sun, X. et al. Genes involved in strigolactone biosyntheses and their expression analyses in columnar apple and standard apple. Biol Plantarum. 64: 68-76 (2020).

63 Cheng, J. et al. Functional analysis of the Gibberellin 2-oxidase gene family in peach. Front Plant Sci. 12: 619158 (2021).

64 Pandey, B. K. et al. Plant roots sense soil compaction through restricted ethylene diffusion. Science 371: 276-280 (2021).

65 Wafula E. K. Computational methods for comparative genomics of non-model species: A case study in the parasitic plant family Orobanchaceae. (The Pennsylvania State University, State College, PA, USA, 2019).

66 Vizueta, J., Sánchez \square Gracia, A., \& Rozas, J. bitacora: A comprehensive tool for the identification and annotation of gene families in genome assemblies. Mol Ecol Resour. 20: 1445-1452 (2020).

67 Kim, S. et al. TGFam \square Finder: a novel solution for target \square gene family annotation in plants. New Phytol. 227: 1568-1581 (2020).

68 Nham, N. T. et al. A transcriptome approach towards understanding the development of ripening capacity in 'Bartlett' pears (Pyrus communis L.). Bmc Genomics. 16: 762 (2015).

69 Hewitt, S. L., Hendrickson, C. A., \& Dhingra, A. Evidence for the involvement of vernalization-related genes in the regulation of cold-induced ripening in 'd'Anjou' and 'Bartlett' pear fruit. Sci Rep-uk. 10: 8478 (2020).

70 Gabay, G. et al. Transcriptome analysis and metabolic profiling reveal the key role of α linolenic acid in dormancy regulation of European pear. J Exp Bot. 70: ery405 (2018). 71 Zhang, Z. et al. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. Bmc Plant Biol. 20: 129 (2020).

72 Nham, N. T., Macnish, A. J., Zakharov, F., \& Mitcham, E. J. 'Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. Plant Sci. 260: 8-18 (2017).

73 Zhang, H. et al. RNA-Seq analysis of the tissue-specific expressed genes of Pyrus betulaefolia in root, stem and leaf. Acta Horticulturae Sinica. 45: 1881-1894 (2018).

74 Yoshihara, T., Spalding, E. P., \& Iino, M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J. 74: 267-279 (2013).

75 Yoshihara, T., \& Spalding, E. P. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol. 175: 959-969 (2017).
$76 \mathrm{Li}, \mathrm{P}$. et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 17: 402-410 (2007).
$77 \mathrm{Yu}, \mathrm{B}$. et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52: 891-898 (2007).

78 Uga, Y. et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 45: 1097-1102 (2013).

79 Mount, S. M. Genomic sequence, splicing, and gene annotation. Am J Hum Genetics. 67: 788-792 (2000).

80 Guo, L., \& Liu, C-M. A single-nucleotide exon found in Arabidopsis. Sci Rep-uk. 5: 18087 (2015).

81 Sharma, S., Sharma, S. N., \& Saxena, R. Identification of short exons disunited by a short intron in eukaryotic DNA regions. Ieee Acm Transactions Comput Biology Bioinform. 17: 16601670 (2018).

82 Zheng, X., Xiao, Y., Tian, Y., Yang, S., \& Wang, C. PcDWF1, a pear brassinosteroid biosynthetic gene homologous to $A t D W A R F 1$, affected the vegetative and reproductive growth of plants. Bmc Plant Biol. 20: 109 (2020).

83 Cancino-García, V. J., Ramírez-Prado, J. H., \& De-la-Peña, C. Auxin perception in Agave is dependent on the species' Auxin Response Factors. Sci Rep-uk. 10: 3860 (2020).

84 Feng, Y. et al. Genome-wide identification and characterization of ABC transporters in nine Rosaceae species identifying $M d A B C G 28$ as a possible cytokinin transporter linked to dwarfing. Int J Mol Sci. 20: 5783 (2019).

85 Wall, P. K. et al. PlantTribes: a gene and gene family resource for comparative genomics in plants. Nucleic Acids Res. 36: D970-D976 (2008).

86 Harper, L. et al. AgBioData consortium recommendations for sustainable genomics and genetics databases for agriculture. Database. 2018: 1-32 (2018).

87 Michiels, A., Ende, W. V. den., Tucker, M., Riet, L. V., \& Laere, A. V. Extraction of highquality genomic DNA from latex-containing plants. Anal Biochem. 315: 85-89 (2003).

88 Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27: 722-736 (2017).

89 Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics. 29: 2669-2677 (2013).

90 Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M., \& Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27: 757-767 (2017).

91 Chakraborty, M., Baldwin-Brown, J. G., Long, A. D., \& Emerson, J. J. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 44: e147-e147 (2016).

92 Jackman, S. D. et al. Tigmint: correcting assembly errors using linked reads from large molecules. Bmc Bioinformatics. 19: 393 (2018).

93 Yeo, S., Coombe, L., Warren, R. L., Chu, J., \& Birol, I. ARCS: scaffolding genome drafts with linked reads. Bioinformatics. 34: 725-731 (2017).

94 Boetzer, M. \& Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13: R56 (2012).

95 Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. Plos One. 9: e112963 (2014).

96 Hämälä, T. et al. Genomic structural variants constrain and facilitate adaptation in natural populations of Theobroma cacao, the chocolate tree. PNAS. doi:10.1073/pnas. 2102914118 (2021).

97 Alonge, M. et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes.
Genome Biol. 20: 224 (2019).
98 Cabanettes, F. \& Klopp, C. D-GENIES: dot plot large genomes in an interactive, efficient and simple way. Peerj. 6: e4958 (2018).
$99 \mathrm{Li} \mathrm{H} .\mathrm{Minimap} \mathrm{and} \mathrm{miniasm:} \mathrm{fast} \mathrm{mapping} \mathrm{and} \mathrm{de} \mathrm{novo} \mathrm{assembly} \mathrm{for} \mathrm{noisy} \mathrm{long} \mathrm{sequences}$. Bioinformatics. 32: 2103-2110 (2016).

100 Campbell, M. S., Holt, C., Moore, B., \& Yandell, M. Genome annotation and curation using MAKER and MAKER \square P. Curr Protoc Bioinform. 48: 4.11.1-4.11.39 (2014).

101 Han, Y. \& Wessler, S. R. MITE-Hunter: a program for discovering miniature inverted-
repeat transposable elements from genomic sequences. Nucleic Acids Res. 38: e199-e199 (2010). 102 Ellinghaus, D., Kurtz, S., \& Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. Bmc Bioinformatics. 9: 18 (2008).

103 Steinbiss, S., Willhoeft, U., Gremme, G., \& Kurtz, S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 37: 7002-7013 (2009).

104 Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29: 644-652 (2011).

105 Jung, S. et al. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 47: D1137-D1145 (2018).

106 Cheng, C. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89: 789-804 (2017).

107 Kuhn, R. M., Haussler, D., \& Kent, W. J. The UCSC genome browser and associated tools. Brief Bioinform. 14: 144-161 (2013).

108 Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18: 188-196 (2008).

109 Stanke, M., Steinkamp, R., Waack, S., \& Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32: W309-W312 (2004).

110 Hoff, K. J. \& Stanke, M. Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinform. 65: e57 (2019).

111 Korf, I. Gene finding in novel genomes. Bmc Bioinformatics. 5: 59 (2004).
112 Emms, D. M. \& Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20: 238 (2019).

113 Camacho, C. et al. BLAST+: architecture and applications. Bmc Bioinformatics. 10: 421 (2009).

114 Eddy, S. R. Accelerated Profile HMM Searches. Plos Comput Biol. 7: e1002195 (2011).
115 Li , Y. et al. Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina- and SMRT-based RNA-seq datasets. Dna Res. 25: dsx038 (2017).

116 Raymond, O. et al. The Rosa genome provides new insights into the domestication of modern roses. Nat Genet. 50: 772-777 (2018).

117 VanBuren, R. et al. A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. Gigascience. 7: giy094- (2018).

118 Shirasawa, K. et al. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. Dna Res. 24: dsx020- (2017).
$119 \mathrm{Ou}, \mathrm{C}$. et al. A de novo genome assembly of the dwarfing pear rootstock Zhongai 1. Sci Data 6: 281 (2019).

120 Xue, H. et al. Chromosome level high-density integrated genetic maps improve the Pyrus bretschneideri 'DangshanSuli' v1.0 genome. Bmc Genomics. 19: 833 (2018).

121 Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 8: 1494-1512 (2013).

122 Katoh, K., Misawa, K., Kuma, K., \& Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066 (2002).

123 Capella-Gutiérrez, S., Silla-Martínez, J. M., \& Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25: 1972-1973 (2009).

124 Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30: 1312-1313 (2014).

125 Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28: 1647-1649 (2012).

126 Huson, D. H., \& Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Systematic Biol. 61: 1061-1067 (2012).

127 Mulder, N. \& Apweiler, R. Comparative Genomics. Methods Mol Biology. 396: 59-70 (2007).

128 Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33: W116W120 (2005).

129 Dunn, N. A. et al. Apollo: Democratizing genome annotation. Plos Comput Biol. 15: e1006790 (2019).

130 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 29: 15-21 (2013).

131 Chen, C. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 13: 1194-1202 (2020).

Figure legends

Fig 1. Characterization of the d'Anjou_v1 genome and protein orthology among European pears. a. Dot plot of genome alignment of Bartlett.DH_v2 (x axis) and d'Anjou_v1 (y axis). b. Overlap and distinctiveness of gene annotations among three Pyrus communis genotypes, Bartlett_v1, Bartlett.DH_v2, and d'Anjou.

Fig 2. A workflow for candidate gene identification, curation, and gene family construction. Grey dotted boxes outlined the three steps of this workflow. Boxes with green outlines are input information. Boxes with blue outlines are intermediate outputs and boxes with purple outlines are final outputs. Contents in boxes with orange outlines are softwares used for generating the outputs.

Fig 3. Phylogeny, amino acid sequence comparison, and RNAseq read mapping of PIN

 genes. a. One clade of short PINs from OG1145 phylogeny. Malus genes are indicated with a blue background, Pyrus with a green background, and Prunus with a pink background. b. Amino acid sequence alignment of orthologous genes from 10 Amygdaloideae species in the long PIN gene family (OG438). Sites identical to the consensus are shown in grey and sites different from the consensus are shown with a color following the Clustal color scheme in Geneious. Green color in the identity row indicates 100% identical across all sequences and greeny-brown color indicates identity from $>30 \%$ to $<100 \%$ identity. Gaps in the alignment are shown with a straight line. c. RNAseq reads (forward: red; reverse: blue) mapped to a fragment of chromosome 13 in the Bartlett.DH_v2 genome, where a long PIN gene, Pyrco_BartlettDH_13g21160, was annotated. Gene model in the yellow box is a putative genemodel predicted with RNAseq reads (ref. 73) mapped to this region. The two gene models above the read mapping are retrieved from the original annotations of Bartlett_v1 (Pyrco_Bartlett_017869.1) and Bartlett.DH_v2 (Pyrco_BartlettDH_13g21160). Fig 4. Phylogeny, intron-exon structure, and amino acid comparison of IGT genes. a. Cladogram of the IGT gene family (including LAZY1-like, LAZY5-like, TAC1-like, and DROlike). Genes are colored as shown in Supplementary Fig. 2. 1000 bootstrap replicates were conducted to estimate reliability and the numbers on the node indicate bootstrap support. b. Cartoon illustrating intron-exon structures of IGT genes from Arabidopsis thaliana (Araport11), Bartlett.DH_v2, and d'Anjou. c. Amino acid alignment of IGT genes from Arabidopsis thaliana, Bartlett.DH_v2, and d'Anjou. Sites consisting of a similar amino acid type as the consensus were highlighted with a background color following the Clustal color scheme in Geneious. Red color in the identity row indicates identity < 30%. Five conserved regions were highlighted with a grey symbol below the consensus sequence.

Characteristics	Bartlett_v1	Bartlett.DH_v2	d'Anjou_v1
Assembly			
Assembly size (Mb)	600	507.7	600
Number of scaffolds	142,083	592	5800
Scaffold N50	88 Kb	8.1 Mb	358.88 Kb
Pseudochromosomes	17	17	17
Annotation			
Predicted gene number	43,419	37,445	45,981
BUSCO	96.5%	96.5%	96.6%
Mean CDS length	1209	1120	1343

Annotation

Characteristics	Bartlett_v1	Bartlett.DH_v2	d'Anjou_v1
Assembly			
Assembly size (Mb)	600	507.7	600
Number of scaffolds	142,083	592	5800
Scaffold N50	88 Kb	8.1 Mb	358.88 Kb
Pseudochromosomes	17	17	17
Annotation			
Predicted gene number	43,419	37,445	45,981
BUSCO	96.5%	96.5%	96.6%
Mean CDS length	1209	1120	1343

Gene family classification

Gene family classification			
Percentage of genes classified into pear orthogroups	76.2	76.2	80.4
Percentage of pear orthogroups containing genes	93.7	81	90.7
Number of 26Gv2 orthogroups containing genes	9878	9668	9837

93.7 Number of 26Gv2 orthogroups $9878 \quad 9668$

9837 containing genes containing genes

Tables

Table 1. Comparison of genome assembly and annotation, and orthogroups among Pyrus communis genotypes.

Family/ Gene	Species	Gene ID	Cultivar/Ecotype	Method	Associated Architecture Phenotype	Refs
PIN						
PIN1	Apple (Malus domestica)	MdPIN1: MDP0000138035 (M. domestica genome v1.0)	Royal Gala	Overexpression of Malus PIN1 gene in Arabidopsis	Inhibition of primary root elongation, increased lateral root number, enhanced phototropic and geotropism responses.	[51]
		MdPINIa: MF506847 MdPIN1b: MF506848 (Genbank)	Rootstocks: Baleng Crab, M9; Interstems: M9; Scion: Red Fuji	Comparative gene expression between cultivars; subcellular localization; overexpression in tobacco; IAA	Lower MdPINIb expression in bark of M9 dwarfing rootstock and interstem; longer lateral roots, more adventitious roots, shorter and fewer root hairs in MdPINIboverexpressing tobacco	[53]

	Pear (Pyrus communis, P. bretschneide ri)	PcPIN-L: PCP021016 (P. communis genome v1.0)	Aihuali x Chili' (P. bretschneideri Rehd.), Aihuali, Chili	Comparative gene expression between cultivars, across tissue types; subcellular localization; promoter activity; overexpression in tobacco, IAA quantification	Lower PcPIN-L expression in leaves, stems, roots, and seeds of pears exhibiting dwarfism; higher IAA content in shoot tips and lower IAA content in stems of pears exhibiting dwarfism; taller plants with longer cells in the stem, longer and more lateral roots in PcPIN-L overexpressing tobacco lines	[58]
PIN1, PIN3	Apple (Malus robusta, M. spectabilis)	MrPINI: MDP0000138035 MrPIN3: MDP0000497581 (M . domestica genome v1.0)	Rootstock: M. robusta Scion: M. specitabilis Bly114 (Standard) and more- branching mutant (MB)	Gene expression (transcriptome and qPCR) and phenotypes of grafted plants, sugar and hormone quantification across tissues	The more-branching (MB) mutant repressed rootstock growth, and glycolysis and tricarboxylic acid activities. Rootstocks grafted with MB showed reduced MrPIN1 expression, and increased MrPIN3 expression.	[46]
PIN family	Pear (Pyrus bretschneide ri, P. betulifolia, P. communis)	PbPIN1-1: LOC103946937 PbPINI-2: LOC103950573 PbPINI-3: LOC103933990 PbPINI-4: LOC103960490 PbPIN2-1: LOC103941631 PbPIN2-2: LOC103950477 PbPIN3-1: LOC103947028 PbPIN3-2: LOC103948593 PbPIN3-3: LOC103948670 PbPIN4: LOC103931858 PbPIN5-I:	Rootstock: Douli Interstems: OHF51, QN101 Scion: Xueqing	Comparative gene expression between cultivars	Compared PbPIN gene expression among different tissues of dwarfing OHF51 and vigorous QN101 rootstock cultivars, finding differential expression across tissues. Many PbPINs had higher shoot tip expression in the dwarfing rootstocks.	[61]

LOC103930394
PbPIN5-2:
LOC103938552
PbPIN6:
LOC103951142
PbPIN8:
LOC103934837
(Genbank)

Arabidopsis	AtPIN1: At1g73590 AtPIN2: At5g57090 AtPIN3: At1g70940 AtPIN4: At2g01420 AtPIN5: At5g 16530 AtPIN6: At2g77110 AtPIN7: At1g23080 AtPIN8: At5g15100 (TAIR10)		Review of PIN protein evolution, protein structure, genomic structure, expression patterns, subcellular mechanisms, mutant phenotypes	Mutations in one or more PIN genes can lead to pinlike inflorescences, floral defects, gravitropism defects in the shoot or root, fused leaves or cotyledons, and loss of apical-basal patterning.	[38]
Across kingdom		All plants	Review of the role of auxin transport in branching forms across the plant kingdom	PIN proteins, via polar auxin transport, regulate branch initiation. branch outgrowth, and branch angle in flowering plants.	[48]

AUX/LA						
AUX1, LAX2	Apple (Malus domestica)	MdLAX2: MDP0000020317, MDP0000155074 MdAUXI: MDP0000155113 (M. domestica genome v1.0)	Rootstock: M9, M27, M793 Scion: Royal Gala	Gene expression (transcriptome and qPCR) comparing dwarfing (M27, M9) and vigorous (M793) rootstocks, carbohydrate analysis	Dwarfing rootstocks exhibited a downregulation of MdAUX1 and MdLAX2 auxin transporters, among other differentially expressed genes. Further, starch synthesis was upregulated, and dwarfing rootstocks contained higher starch and lower fructose and glucose.	[47]

AUX1	Apple (Malus domestica)	MdAUXI: MDP0000885425 (M. domestica genome v1.0)	Hanfu (diploid and autotetraploid seedlings)	Phenotyping, Gene expression (Tag-seq and qPCR) comparing diploids and autotetraploids	Autotetraploid plants exhibited dwarfism. AUXI was found to be downregulated, in addition to changes in brassinosteroid gene expression (see below).	[45]
AUX1/ LAX family	All plants (focus on models)	AUX1/LAX genes across species		Review	Auxin transport, via AUX1/LAX proteins, PINs, and PGP/ABCBs, plays a major role in many architecture-related developmental processes, such as root development (primary and lateral root, gravitropism, root hairs), phyllotactic patterning, leaf morphogenesis, and inflorescence architecture.	[59]
IGT						
TAC1	Prunus persica	PpeTAC1: Ppa010082 (P. persica genome v1.0) AtTAC1: At2g46640 (TAIR10)	Crimson Rocket	Pnome to map pillar mutation, gene expression, branch and flower bud angle phenotypes, AtTAC1 overexpression in Arabidopsis	Pillar peach variety "Crimson Rocket" has insertion within PpeTAC1 gene. Overexpression of AtTACl in Arabidopsis leads to narrow branch angles. PpeTAC1 and $A t T A C 1$ are expressed in branch tips.	[42]
TAC1, LAZY1, LAZY2	Apple (Malus domestica)	MdoTACla: MG837476 MdoTAC1b: MG837477 MdoLAZY1: MG837478 MdoLAZY2: MG837479 (Genbank)	Rootstock: Malus robusta Scion: McIntosh, Wijcik, Granny Smith, Fukushima spur	Gene expression (qPCR) comparing cultivars representative of four architectural ideotypes.	Comparison of IGT gene expression between McIntosh (standard), Fukushima spur (spur), Granny Smith (tipbearing), and Wijcik (columnar), showed decreasing levels of TAC1 in shoot tips in that cultivar order, with the lowest expression of all identified IGT genes in the columnar cultivar in all tissues.	[55]

DRO1	Apple (Malus domestica)	MdDROI: MDP0000142588 MdDRO2: MDP0000151294 MdDRO3: MDP0000723826 MdPIN11: MDP0000125862 (M. domestica genome v1.0)	Rootstock: M9, Baleng Crab and interspecific hybrids from M9 x BC cross (rooted cuttings)	Root angle phenotyping, gene expression (qPCR in roots tissue), IAA quantification	Deep-rooted Baleng Crab had steeper root angles, and greater root length than M9. M9 showed lower IAA content, higher IAA oxidase activity, fewer amyloplasts, and lower expression of MdDROI and MdPIN11 architectureassociated genes.	[50]
	Plum (Prunus domestica), Peach (Prunus persica), Arabidopsis	PpeDRO1: Ppa021925 (P. persica genome v1.0) AtDRO1: Atlg72490 AtDRO2: Atlg19115 AtDRO3: Atlg17400 (TAIR10)	Plum seedlings: Stanley Arabidopsis: Columbia	Gene expression (qPCR, GUS), root angle phenotyping, root gravitropism, DROI overexpression in plum and Arabidopsis	$\mathrm{DRO1}$ and DRO 2 are expressed in roots in Arabidopsis and peach. atdro1 mutants had wider lateral root angles, but no different in primary root gravitropism. AtDRO1 OE Arabidopsis had narrower lateral root branch angles, distinct upward leaf curling, shorter siliques, narrower shoot branch angle. PpeDRO1 OE plum roots were longer with greater root/shoot weight than controls.	[49]
IGT Family	Across kingdom	$I G T$ gene across species		Review of IGT gene studies from the 1930's to the present, phylogenetic analysis	$I G T$ genes influence growth angle/gravitropic set point angle of both shoots and roots, which affects access to water and nutrients, density of plantings, structural integrity and soil anchorage, and overall crop productivity.	[34]

GID1

GID1c	Peach (Prunus persica)	PpeGID1c: Ppa018174 (P. persica genome v1.0)	Brachytic dwarf (BD), Standard, and a mapping population from a BD x Std cross	Pnome to map $d w$ mutation, phenotyping and GA application response, RNAi silencing of GID1c in plum, gene expression (qPCR)	BD peaches exhibit extreme dwarfism, primarily attributed to reduced internode length. The $d w$ mutation in BD peaches was mapped to PpeGID1c. BD peaches showed insensitivity to GA treatment. Silencing GID1c in plums led to a BD-like dwarfed phenotype.	[44]
			FenHuaShouXing Tao (FHSXT), QiuMiHong (QMH)	Phenotyping of dwarf (FHSXT) and Standard (QMH) cultivars, GA response and quantification, gene expression (qPCR), yeast-2hybrid, protein quantification (western)	FHSXT exhibited extreme dwarfism, short internodes, shorter cell length, fewer branches, and longer leaves. FHSXT had high levels of GA and were GA insensitive. GID1c was upregulated in FHSXT, as were multiple GA biosynthesis genes (see below). The mutation in FHSXT GID1c abolished interaction with DELLA1 in a yeast-2-hybrid assay.	[56]
GID1	Arabidopsis	AtGID1a: At3g05120, AtGID1b: At3g63010, AtGID1c: At5g27320 (TAIR10)	Columbia	Phenotyping mutants, gene expression (qPCR), GA treatment and quantification	Double mutants atgidla atgidlc and atgidla atgidlb showed reduced stem height phenotypes, while the triple mutant exhibited severe dwarfing and GA insensitivity. The triple mutant phenotype was partially rescued by loss of function of the DELLA protein AtRGA.	[36]

GA20x, GA3ox, GA200x

GA20x	Peach (Prunus persica)	PpeGA2ox-1: Prupe.1G111900 PpeGA2ox-2: Prupe.1G344000 PpeGA2ox-3: Prupe.3G006700 PpeGA2ox-4: Prupe.4G026300	QiuMiHong (QMH)	Gene expression (qPCR), PpeGA2ox gene overexpression in tobacco, GA treatment and quantification	Seven GA2ox genes were identified in peach and classified into three subgroups, and tissuespecific expression was determined in a standard peach cultivar. Overexpression of	[63]

		PpeGA2ox-5: Prupe.4G080700 PpeGA2ox-6: Prupe.4G150200 PpeGA2ox-7: Prupe.4G204600 (P. persica genome v2.0)			PpeGA2ox1, PpeGA2ox5, and PpeGA2ox2 resulted in dwarf phenotypes in tobacco. GA treatment at shoot tips induced expressions of all PpeGA2ox genes, but at different rates.	
	Arabidopsis thaliana	AtGA2oxl: Atlg 78440 AtGA2ox2: Atlg30040 AtGA2ox3: At2g34555 AtGA2ox4: Atlg47990 AtGA2ox6: Atlg02400 AtGA2ox7: Atlg50960 AtGA2ox8: At4g21200 (TAIR10)	Columbia-o and hy5 mutant	Gene expression (GUS reporters, qPCR), GA2ox overexpression	Overexpression of GA2ox genes inhibited elongation of the hypocotyl, rescued the long-hypocotyl phenotype of hy5 mutants. Overexpression of GA2ox7 and 8 led to extra shortening of the hypocotyl in hy 5 mutants.	[57]
GA200x	Apple (Malus domestica)	$\begin{aligned} & M p G A 20 o x l A \\ & M p G A 20 o x l B \end{aligned}$ (Noted from M. pumila, a previous name for M. domestica. Gene IDs unclear)	Rootstock: M25, MM106 Scion: Greensleeves	Gene expression (qPCR), gene silencing, phenotyping, grafting onto invigorating rootstocks, GA quantification	Silencing of MpGA20oxlA and B led to reduced height, and reduced internode length and number. Application of exogenous GA rescued the dwarfed phenotype. Transgenic dwarfed scions remained dwarfed after grafting onto invigorating rootstocks.	[35]
GA20x, GA3ox, GA200x	Peach (Prunus persica)		FenHuaShouXing Tao (FHSXT), QiuMiHong (QMH)	See above (GID1)	Expression of several GA2ox, GA3ox, and GA20ox GA biosynthesis genes were upregulated in a dwarfed variety (FHSXT), as was GIDlc (see above).	[56]

WRKY9

WRKY9	Apple (Malus domestica)	MdWRKY9: MDP0000272940 (M. domestica genome v1.0)	Dwarfing rootstock: M. 9 Pajam 2, M26, GM256, B9 and M. 9 T337 Non-dwarfing rootstock: M. baccata, M. robusta, M. sieversii, M. prunifolia, M. zumi	Gene expression (qPCR), MdWRKY9 overexpression in apple, subcellular localization, transcriptional inhibition assays, hormone quantification, CHIP-qPCR	MdWRKY9 was more highly expressed in dwarfing rootstock. Overexpression of MdWRKY9 in M26 semidwarfing rootstock resulted in dwarfed characteristics, and fewer, but longer roots. MdWRKY9 binds and inhibits expression of the brassinosteroid biosynthetic gene MdDWF4 (see below)	[54]
EIN2						
EIN2	Rice (Oryza sativa)	OsEIN2: LOC_Os07g06130 OsEIL1: LOC_Os03g20790 (MSU Rice Gene Models)	Nipponbare	Computed tomography (CT), mutant analysis, confocal microscopy, ethylene treatment and quantification, gas barrier treatment, GUS assay, ethylene biosensor	Ethylene-insensitive signaling mutants (osein2 and oseill) were unaffected by and grew deeper into compacted soil. Shoot and root biomass was increased in ethylene-insensitive mutants grown in compacted soil. Ethylene was slow to diffuse through compacted soils and ethylene detection in the root was shown to increase in compacted soil.	[64]
	Arabidopsis thaliana	AtEIN2: At5g03280 (TAIR10)	Columbia	Gene expression (GUS), root architecture phenotyping on differing Boron concentrations, mutant analysis	Ethylene-insensitive mutant atein2-1 inhibited increased root hair formation and elongation under low-Boron conditions.	[39]

All species	Ethylene signaling and biosynthesis genes	Review of ethylene effects on root and hypocotyl elongation, root hair formation, apical hook formation, stem growth, biosynthesis pathway, and signaling pathway	Inhibitory effects of ethylene on root growth observed as early as 1901. Plant grown on aerated soils have high ethylene and strong root growth inhibition when treated with ethylene. Ethylene interacts with GA and auxin pathways to regulate root growth, as well as JA and auxin pathways to regulate root hair formation. Ethylene plays a role in inhibiting stem growth, and can also stimulate stem growth in shaded conditions.

DWF1, DWF4

DWF1, DWF4	Apple (Malus domestica)	MdDWF1-1: MD13G1007700 MdDWF1-2: MD16G1000400 MdDWF4-1: MD02G1149000 MdDWF4-2: MD15G1263900 MdDWF4-3: MD17G1120200 (M. domestica GDDH13 genome v1.1)	Rooted seedlings: M.9-T337, Yanfu No. 6 (YF), Nagafu No. 2 (CF), M. hupehensis Rootstock: M.9, CF Scion: CF	Phylogeny, synteny analysis, gene expression (qPCR), hormone treatment and quantification	YF trees are spur type and have lower shoot elongation rate, number of internodes, and average internode length relative to CF. $m d d w f 1-1$ and $m d d w f 1-2$ are highly expressed in CF relative to YF. CF/M. 9 (dwarf) trees have lower $m d d w f 4$ and $m d d w f 1$ expression relative to CF/CF.	[52]
DWF4	Apple (Malus domestica)	MdDWF4: MDP0000498540 (M. domestica genome v1.0)	Dwarfing rootstock: M. 9 Pajam 2, M26, GM256, B9 and M. 9 T337 Non-dwarfing rootstock: M. baccata, M. robusta, M. sieversii, M. prunifolia, and M. zumi	Gene expression (qPCR), MdWRKY9 overexpression in apple, subcellular localization, transcriptional inhibition assays, hormone quantification, CHIP-qPCR	Overexpression of $M d W R K Y 9$ in apple resulted in significantly lower expression of $m d d w f 4$ and lower brassinosteroid content. MdWRKY9 binds and inhibits expression of the brassinosteroid biosynthetic gene $M d D W F 4$ (see above).	[54]

$\begin{aligned} & \text { DWF1, } \\ & \text { DWF4 } \end{aligned}$	Arabidopsis, Tomato	AtDWF1: At3g19820 AtDWF4: At3g50660 (TAIR10)		Review of multiple BR biosynthetic genes, pathways, and mutant phenotypes and chemicals that led to these findings	$d w f$ mutants exhibit extreme dwarfism, with additional alteration in leaf and inflorescence development. DWARF1 is a biosynthetic enzyme involved in reducing C24 of BR. DWARF4 is a cytochrome P450 enzyme involved in hydroxylating C22 of BR and represents a rate-limiting step in biosynthesis.	[33]
IPT3						
IPT3	Apple (Malus domestica)	MdPIN1: Unclear. Degenerate primers designed based on Arabidopsis, lupin, pea, and Populus sequences. MdIPT3: Unclear. Degenerate primers designed based on Malus hupehensis, Arabidopsis, and cabbage sequences.	Rootstock: M9 and MM (M. x micromalus) Scion: Red Fuji Interstock: M9	Gene expression (qPCR), hormone quantification, grafting substitution experiments (rootstock substitutions, rootstock bridging, and bark substitutions)	M9 (common dwarfing rootstock) seedlings showed lower PINI and IPT3 expression, as well as lower auxin and zeatin across different plant tissues, compared with MM seedlings. Grafting combinations including M9 as rootstock or standard interstock similarly frequently had reduced PINI and IPT3 expression and reduced hormone levels compared with MM grafting combinations. The reduced levels were largely rescued when MM or Red Fuji were introduced as rootstock substitutions, bridged, or bark substitutions.	[40]
	Arabidopsis	AtIPT3: At3g63110 AtIPT5: At5g19040 AtAHK2: At5g35750 AtAHK3: Atlg27320 AtAHK4: At2g01830 (TAIR10)	Col-0	Root architecture phenotyping, gene expression (GUS), hormone treatments, overexpression of cytokinin catabolism genes, mutant	Increasing concentrations ot cytokinin led to decreases in lateral root (LR) density. Loss of IPT3 and other IPT (cytokinin biosynthesis) genes resulted in increased LR formation and density. Similarly, loss of AHK	41]

analysis of	cytokinin receptor genes
biosynthesis	led to increased LR
genes	densities.

MAX1, MAX2, MAX3, MAX4						
MAX1, MAX2, MAX3, MAX4	Apple (Malus domestica)	MdMAX1-1: MDP0000130133 MdMAX1-2: MDP0000677258 MdMAX1-3: MDP0000909874 MdMAX2-1: MDP0000466825 MdMAX3-1: MDP0000197409 MdMAX3-2: MDP0000139334 MdMAX4-1: MDP0000227870 MdMAX4-4: Unclear (Based on primer sequences, M. domestica genome v1.0)	Standards: McIntosh genotypes 21-S, 31-S, and 77-S Columnar apples: Wijcik genotypes 21-C, 31-C, 77-C	Gene expression (qPCR) comparing standard and columnar phenotypes, strigolactone quantification, overexpression of $\mathrm{MdCo3l}$ in tobacco	MdMAX gene expression was frequently higher in columnar apple buds and shoots, as was expression of MdCo31. Overexpression of $\mathrm{MdCo31}$ in tobacco resulted in plants with reduced height, internode lengths, and increase leaf thickness and chlorophyll content. Tobacco MAX3 was increased in these lines, while tobacco MAXI was upregulated only in the line with the shortest stature.	[62]
	Peach (Prunus persica)	PpeMAX1: Ppa003950m PpeMAX2: Ppa002017m PреMAX3: Ppa017865m PpeMAX4: Ppa006042m (P. persica genome v1.0)	Rootstock: Lovell, Bailey, Tennessee natural Scion: Redhaven (standard), Harrow Beauty (standard), Bounty (standard), Crimson Rocket (pillar), Sweet-NUp (upright)	Gene expression (qPCR), hormone quantification between standard, upright, and pillar growth habits	PpeMAX3 and PpeMAX4 expression was higher in in stems following pruning. PpeMAX3 expression and auxin concentrations were greater in the roots of pillar phenotype. PpeMAXI-4 expression was intermediate between pillar and standard. Expression of PpeMAX1, PpeMAX2, and PpeMAX4 in roots were higher in pillar, but not statistically significant.	[43]

972
973

Figures

Figure 1

a
Bartlett.DH_v2

b

Figure 2

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.17.467977; this version posted November 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 3

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.17.467977; this version posted November 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 4

