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ABSTRACT
Motivation: The gene expression intensity information
conveyed by (EST) Expressed Sequence Tag data can be
used to infer important cDNA library properties, such as
gene number and expression patterns. However, EST clus-
tering errors, which often lead to greatly inflated estimates
of obtained unique genes, have become a major obstacle
in the analyses. The EST clustering error structure, the rela-
tionship between clustering error and clustering criteria, and
possible error correction methods need to be systematically
investigated.
Results: We identify and quantify two types of EST cluster-
ing error, namely, Type I and II in EST clustering using CAP3
assembling program. A Type I error occurs when ESTs from
the same gene do not form a cluster whereas a Type II error
occurs when ESTs from distinct genes are falsely clustered
together. While the Type II error rate is <1.5% for both 5′

and 3′ EST clustering, the Type I error in the 5′ EST case
is ∼10 times higher than the 3′ EST case (30% versus 3%).
An over-stringent identity rule, e.g., P ≥ 95%, may even inflate
the Type I error in both cases. We demonstrate that ∼80%
of the Type I error is due to insufficient overlap among sib-
ling ESTs (ISO error) in 5′ EST clustering. A novel statistical
approach is proposed to correct ISO error to provide more
accurate estimates of the true gene cluster profile.
Availability: We have automated the methods developed in
this paper in a web-based software ESTstat at http://cwdg5.
bio.psu.edu/eststat.
Contact: jzwang@northwestern.edu
Supplementary information: http://cwdg5.bio.psu.edu/eststat

1 INTRODUCTION
Expressed sequence tag (EST) sequencing is a cost-effective
way to survey the expressed portions of the genome. The
rapidly growing EST database has become an invaluable tool

∗To whom correspondence should be addressed.

for novel gene discovery (Adams et al., 1992, 1993), gene
mapping (Khan et al., 1992), genome annotation, single
nucleotide polymorphism (SNP) discovery (Hu et al., 2002;
Picoult-Newberg et al., 1999) and alternative splicing detec-
tion (Lee, 2003; Heber et al., 2002; Xu et al., 2002; Modrek
and Lee, 2002; Modrek et al., 2001). Major efforts have
been made in clustering of EST data from one or mul-
tiple cDNA libraries in many species, including UniGene
(Boguski and Schuler, 1995; Schuler et al., 1996), the TIGR
Gene Index (Liang et al., 2000), the Sequence Tag Align-
ment and Consensus Knowledgebase (STACK) (Miller et al.,
1999; Christoffels et al., 2001) (http://www.sanbi.ac.za/)
and IMAGEne (http://image.llnl.gov/). These index systems
provide convenient Web interfaces to search for genes or gene
families of interest and to investigate gene expression patterns
by tissue types.

In contrast to the diverse applications of the sequence
information from ESTs, the information on gene expression
level from EST clustering has yet to be fully exploited. Let
Xj be the number of ESTs from the j -th gene (to be called
siblings), then Xj directly reflects the relative expression level
of the underlying gene in the cDNA library. Therefore, Xj s
can be used to detect differential gene expression if the cDNA
library is non-normalized (Audic and Claverie, 1997; Stekel
et al., 2000). If we further define ni = ∑

j I (Xj = i) as
the total number of genes with i ESTs in the sample, then
n = (n1, n2, . . .) is a sufficient statistic for the transcript
abundance distribution in the cDNA library (note: if the cDNA
library is normalized, then the n data will not reflect the true
gene expression level in the underlying tissue). Here we call
n the true gene cluster profile.

Our research is motivated by a desire to address a series
of questions about the cDNA library that require an accur-
ate estimate of the true gene cluster profile, n, for legitimate
statistical inferences. For example, given an EST set from a
specific tissue at a specific developmental stage, we would like
to estimate the total number of expressed genes in this tissue
at the developmental stage. We would like to know how many
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genes have been sampled and the sequencing redundancy rate.
While generating EST sequences, we would like to estimate
the transcript redundancy in a cDNA library, and use this
estimate to determine the most cost-efficient point to stop
random EST sequencing from that library. All of these consid-
erations require an accurate estimate of the true gene cluster
profile, n. For these applications, the EST data are not restric-
ted to be from a non-normalized cDNA library as long as the
cDNA clones are randomly sampled and sequenced.

EST clustering usually refers to the entire process of
identifying and assembling sibling ESTs, which can gen-
erate the gene cluster profile data as needed. Both Uni-
Gene and IMAGEne use BLAST-based procedures with low
stringency to assemble sets of ESTs from closely related
genes, and are therefore not suitable for our purpose. Here,
we used CAP3 assembling program (Huang and Madan,
1999) to provide a quick and simplified clustering to illus-
trate the study of EST clustering error and error correc-
tion. CAP3 assembles ESTs from the same gene under
more stringent criteria than the BLAST-based approaches,
and was shown (Liang et al., 2000) superior to TIGR
assembler (Sutton et al., 1995), and Phrap (Green, 1996
http:/ / bozeman.mbt.washington.edu/phrap.docs/phrap.html)
in its ability to distinguish gene family members while toler-
ating sequencing error. The efficiency and reliability of CAP3
can also be improved by incorporating basecall quality data
in the clustering algorithm. Although our systematic invest-
igation of clustering error in this paper is based on CAP3
assembling alone, this analysis could be extended to other
clustering pipelines such as STACK_pack (Miller et al., 1999;
Christoffels et al., 2001) (see Discussion section).

The accuracy of EST clustering is affected by various error
sources, such as sequencing error, contaminant sequences and
the products of chimeric splicing. Regarding the clustering
outcome, EST clustering error can be simply classified into
two types, which we will call Type I and Type II through ana-
logy with statistical hypothesis testing theory (Burke et al.,
1999). The Type I error is a mis-separation error where
ESTs from the same gene are falsely separated into two or
more clusters (including singletons). The Type II error is a
mis-joining error where two or more non-sibling ESTs are
clustered together. Burke et al. (1999) first described EST
clustering error structure in terms of Type I and II errors and
claimed that the d2_cluster program has upper bound error
rates of 0.4 and 0.8% for Type I and II errors, respectively.
However, we question these error rate estimates, because
regardless of clustering algorithm, the error rate is jointly
determined by the quality of the EST data and the cluster-
ing stringency. Type I and II errors, as we will show in this
paper, are correlated; minimizing one may inflate the other.

There exist substantial EST data for many organisms that
lack full genome sequences or genome annotations. For
these EST sets, generation of the gene cluster profile data n
mainly relies on EST clustering programs such as CAP3. For

convenience, a cluster or contig from the assembly program
here will be called a ‘unigene’. Because of the two types of
errors, multiple unigenes can represent the same gene (Type
I), and a single unigene can involve non-sibling ESTs (Type
II). The sibling ESTs are identified if high similarity exists
between them, thereby the clustering result is closely related
to the stringency of parameter setting in the clustering or
assembling algorithms. Furthermore, different types of clus-
tering errors will depend on the parameter setting in different
fashions as to be demonstrated. For CAP3, the two main para-
meters are the overlap length O and percentage identity P in
the overlapped region. We found that the clustering error rate
is relatively insensitive to the ‘overlap length’ threshold when
it is set within the range from O = 25–45 bp (see Discussion
section). Hence, one goal here is to investigate the relationship
between the stringency of the identity rule in CAP3 and the
magnitude of Type I and Type II errors. The results provide
insights to optimal choice of the stringency rule. We show
that ISO error accounts for the majority of Type I error rate in
the 5′ EST clustering case. A novel statistical method is pro-
posed to correct for the ISO error, so as to generate a better
estimate of the true gene cluster profile data. Extensions to
other clustering procedures and applications of our methods
are discussed.

2 METHODS

2.1 Evaluation of Type I and II errors
We performed EST preprocessing before clustering to
reduce the errors due to contaminant sequences and
sequencing errors. The SEQCLEAN program from TIGR
(http://www.tigr.org/tdb/tgi/software) was used to trim vec-
tor, poly(A) tail and low-quality bases for each EST at the
default settings. EST sequences shorter than 100 bp after trim-
ming were discarded. After preprocessing, we used CAP3
to cluster ESTs with various stringency criteria (sequence
identity P = 75, 80, 85, 90, 95, 97.5). A range of overlap
lengths was initially examined (O = 25, 30, 35, 40, 45), but
the findings were not sensitive to these choices (see Discussion
section), so O = 40 was used for clustering experiments.

We have defined the true gene cluster profile, n = (n1, . . . ,
ni), where ni is the actual number of genes with i ESTs in the
sample, and n+ = ∑

i ni is the total number of genes. Owing
to clustering error, the nis are not directly observed. How-
ever, n, and the accuracy of estimates of n, can be directly
obtained for organisms that have well-annotated genomes.
Here we took advantage of the annotated Arabidopsis thaliana
genome, using BLASTn to align the ESTs to the genome
and cluster the ESTs that matched the same locus at the
E-value threshold 10−10. If one EST has multiple matches
on the genome, the most significant locus (least E-value) was
recorded. In most cases where multiple matches existed in
this analysis, the E-value of the top match was essentially 0
(�10−10), much smaller in scale than the rest. Therefore we
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felt confident that the top match recorded was the true locus,
and this issue should not be problematic to the clustering error
analysis and correction method proposed in this paper. The
gene cluster profile generated by this method will be regarded
as n.

Correspondingly, we define the observed gene cluster pro-
file as c = (c1, . . . , ci , . . .) where ci counts the clusters with i

ESTs that is produced by a clustering program such as CAP3
without additional correction. The discrepancy between n and
c is a direct quantitative measure of the clustering error. We
also compared the effect of different stringency parameters on
the error rates.

2.2 ISO error and simulation
An ISO error occurs if the sibling ESTs are separated into
different clusters because they do not meet the specified over-
lap threshold , e.g. O ≥ 40 bp. Figure 1 illustrates a situation
where only two of four 5′ sibling ESTs overlap. Consequently,
one gene would be interpreted as three unigenes, each repres-
enting a different portion of the complete cDNA. ISO error
may occur in 3′ EST clustering, but is especially problem-
atic in 5′ EST clustering because transcripts found in cDNA
libraries are usually truncated at their 5′ ends to different
extents, whereas transcripts with truncated 3′ ends are typic-
ally removed in the cDNA library building process. Therefore
ISO error discussion here is focused on the 5′ EST case.

Suppose one gene is represented by X ESTs in a sample.
After clustering, these ESTs could end up in one or more
clusters due to ISO error. Let Y1 ≥ Y2 ≥ · · · ≥ Yk be the
EST counts in these clusters. For example, in the situation
shown in Figure 1, we have Y1 = 2, Y2 = 1, Y3 = 1. In
our analyses of many EST data sets, we rarely observed a true
EST cluster that was separated into more than four subclusters
due to insufficient overlap. We therefore write the clustering
outcome in a four-dimensional vector Y = (Y1, Y2, Y3, Y4)

with Y1 ≥ Y2 ≥ Y3 ≥ Y4. The ISO error distribution is
defined in a conditional form as P(Y = y|X = x) where X

denotes the true number of ESTs in the sample that represent
a particular gene, i.e. x = ∑

i yi , and y = (y1, y2, y3, y4)

represents the clustering outcome. Back to the above example,
given X = 4, we seek the conditional probability of observing
the following outcomes: one cluster with all four ESTs (no
error): y = (4, 0, 0, 0); two subclusters with counts y = (3,
1, 0, 0) or y = (2, 2, 0, 0); three subclusters with counts y =
(2, 1, 1, 0) and four subclusters with counts y = (1, 1, 1, 1).
Note that under this definition, P [y = (1, 0, 0, 0)|x = 1] = 1
since a singleton cannot be broken into subclusters.

The ISO error distribution P(Y|X) is related to three factors
as seen in Figure 1: (1) the complete cDNA (mRNA) length
Lm; (2) the EST length LE ; and (3) the EST 5′ end loca-
tion S. The marginal distribution of EST length, denoted
as F(LE), is usually determined by sequencing technology.
The marginal distribution of cDNA length F(Lm) may be
organism-specific. The distribution of the EST 5′ end location

Fig. 1. A hypothetical gene that is represented by X = 4 clones in
an EST set. y is the clustering result given X as defined in the text.
The length of the cloned DNAs will vary due to transcript fragmenta-
tion in the RNA extraction and library building process. In the most
commonly used library construction protocols, only transcripts with
intact polyadenylated 3′ ends will be included in the cDNA library.
As a result 3′ ESTs usually align to the 3′ end of the cDNA, but 5′
ESTs will often align to different regions of the complete cDNA.

given a cDNA length will be written as F(S|Lm); this distribu-
tion is determined by experimental conditions or biochemical
mechanisms, and defines the quality of the cDNA library. If
these three distributions were known, then the ISO error dis-
tribution P(Y = y|X = x) could be determined under some
reasonable assumptions about the sampling process. Here, we
used training data to estimate these three distributions.

The training data consisted of 8095 complete cDNAs of
A.thaliana from Riken at http://www.gsc.riken.go.jp (Seki
et al., 2002), and 48 827 5′ ESTs of A.thaliana from NCBI
dbEST (May 2002). The 8095 complete cDNAs were first
clustered using CAP3 (at P = 95%, O = 40) and 6759 con-
tigs were produced. Some ‘complete cDNAs’ were probably
incomplete because they were much shorter than the corres-
ponding contigs. Therefore, the contig length was expected
to give a better approximation of the mRNA length distribu-
tion F(Lm). We then clustered the complete cDNA contigs
together with the 5′ ESTs. Only the clusters containing com-
plete cDNAs were selected. The distribution of the contig
length of selected clusters can be regarded as an empirical ver-
sion of F(Lm). Similarly, the EST 5′ end locations along these
contigs can be used to approximate F(S|Lm). These empirical
distributions are shown in the Supplementary materials.

To find P(Y|X = x), the probability of clustering out-
come Y given that the specific cluster consists of x ESTs for
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x = 2, 3, . . . , one can simulate the true sampling process as
follows: for each x = 2, 3, 4, 5, . . . ,

(1) Sample a complete cDNA length Lm from F(Lm).

(2) Sample x independent 5′ end locations from the EST
clusters in the training data with contig length Lm ± 50
[i.e. sample from F(S|Lm)].

(3) Sample x independent EST lengths from F(LE) [we
are assuming LE is independent of (S, Lm)].

(4) Align the x ESTs along the cDNA according to the
sampled 5′ end locations and EST lengths. If two ESTs
overlap more than 40 bp, cluster them together. Record
the clustering outcome as y|x.

(5) Repeat the above four steps 5000 times, assigning the
outcomes as yi , i=1,2, … ,5000. Calculate the empirical
probability P(Y = y|x) = ∑5000

i=1 I (yi = y|x)/5000
for every distinct y|x observed.

In step 2, we sample from F(S|Lm ± 50) rather than
F(S|Lm) in order to avoid small sample effects. By assum-
ing that the conditional distribution F(S|Lm) is similar in
the neighborhood of the chosen Lm, we can sample the
start positions from those clusters with contig length in the
neighborhood of the sampled Lm and avoid the possibility of
re-sampling the same EST over and over in a small cluster.

3 RESULTS
Arabidopsis thaliana EST sets were used for this investiga-
tion because we are able to take advantage of a well-annotated
genome and a large set of full-length cDNAs (Seki et al.,
2002). In addition, Arabidopsis and perhaps all plant species
exhibit a low rate of alternative-splicing compared to mam-
malian transcripts (Haas et al., 2002). As we discuss below,
inferring the representation of genes in EST sets is problem-
atic when alternative-splicing is common. In addition to the
typical sources of Type I and II error, ESTs from distinct splice
variants may be incorrectly joined (Type II error) when genes
are defined as unique transcripts, and ESTs from distinct splice
variants may be incorrectly separated (Type I error) if genes
are defined as locations in the genome.

3.1 Type I and Type II errors
Two libraries were analyzed to evaluate Type I and II error
rates: (1) a 3′ flower bud EST set and (2) a 5′ EST set
derived from all above-ground organs, 2–6 weeks after plant-
ing (Asamizu et al., 2000). To obtain the true gene cluster
profile n, we aligned each EST to the A.thaliana genome
(TIGR Version 4/17/2003) using BLASTn. Each EST that
matched a specific location on the Arabidopsis genome was
identified from the corresponding annotation file. The n ele-
ments were obtained from the exact count of loci that had
i ESTs. The clustering errors for these two data sets are
summarized in Tables 1, 2 and 3 and discussed below.

3.1.1 A.thaliana 3′ Flower bud EST set The flower bud
EST set obtained from GenBank dbEST (UniLib # = 17697)
included 5827 3′ ESTs of which 5710 were retained after
sequence cleaning. Among these, only 5499 ESTs matched
annotated loci on the genome. The direction for 451 of 5499
(8.2%) ESTs contradicted the genome annotation, implying
that 8.2% of the cDNA inserts were inverted if the genome
annotation was correct. Seven ESTs had no significant match
on the genome and 204 matched loci where no gene model had
been predicted. To evaluate the clustering stringency, we com-
pared the true expression profile, n, for the remaining 5048
(= 5499 − 451) verified 3′ ESTs with the observed expres-
sion profile, c, inferred from CAP3 clustering with a range of
identity parameters.

Overall, the total number of inferred unigenes, c+, was
closest to the true number of genes represented in the EST
set, n+, when the identity parameter was set at 90% (Table 1).
The singleton count c1 is usually a sensitive indicator of the
overall error. For example, when P was changed from 75 to
85%, c1 only increased by 5 (= 1464 − 1459) and remained
much smaller than the true number of singletons n1 = 1488.
This implies that for the identity rule within this range, the
Type II error was relatively larger than the Type I error, and
resulted in an under-count of genes. At P = 90%, how-
ever, the difference between c1 and n1 was minimized as
was the difference between c+ and n+. At 95%, c1 started
to increase dramatically, indicating that P ≥ 95% is too
stringent to tolerate sequencing error, thus inflating Type I
errors.

The behavior of c (Table 1) is explained by the frequency
of the two types of error incidents (Table 2). For example,
at P = 75%, there were 20 genes with ESTs separated into
two sub-clusters. The Type I error frequency remained virtu-
ally constant as P ranged from 75 to 90%. But at P = 95%,
the number of Type I error occurrences jumped to 62 and
doubled at P = 97.5%. On the other hand, the Type II error
rate decreased as the identity percentage P increased, just
as expected. We found that some ESTs from neighboring
loci on the genome formed false clusters, which probably
indicated that the two loci were derived from recent tan-
dem duplications, or the EST was chimeric. This error was
present even at P = 97.5%. Apparently P = 97.5% was
stringent enough to prevent most Type II errors, but at the
cost of more Type I errors.

We further define several statistics to summarize the Type
I and II error rates (Table 3). Let EI be the number of genes
which have their ESTs split among several clusters (>1) due
to Type I error, and let EItot be the number of clusters that
resulted. The net Type I error, EInet = EItot − EI , meas-
ures the number of additional clusters generated due to Type
I error. For example, 22 genes were broken into 44 clusters
at P = 80%, giving EInet = 22. For Type II error, let EII

be the number of clusters which have ESTs from more than
one gene. Let EIItot be the number of genes representing
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Table 1. Comparison of true and observed gene cluster profiles for two A.thaliana EST sets

Cluster size (i) Flower bud ABGR
ani

bc75
i

bc80a

i
bc85

i
bc90

i
bc95

i
bc97.5

i
ani

bc75
i

bc80
i

bc85
i

bc90
i

bc95
i

bc97.5
i

1 1488 1459 1460 1464 1496 1564 1658 1600 1918 1923 1933 1969 2018 3083
2 351 332 333 335 337 332 325 439 390 393 391 399 396 390
3 130 128 128 129 130 128 132 171 157 157 160 152 157 153
4 65 66 67 69 67 69 64 75 58 58 57 60 58 58
5 41 36 36 37 39 38 39 54 47 49 49 46 44 44
6 24 25 25 26 24 23 19 30 26 25 24 25 26 26
7 19 27 26 22 20 17 23 18 16 14 15 14 14 12
8 11 11 11 11 10 13 13 17 17 17 18 17 19 20
9 17 14 14 14 15 15 11 12 11 11 9 8 10 8

10 8 11 11 11 11 9 10 13 13 13 13 13 9 12
>10 7 61 63 63 62 60 58 50 48 47 47 48 47 45

n+ or c+ 2216 2172 2174 2181 2211 2269 2352 2479 2701 2708 2717 2751 2798 2851
ESTtot 5048 5048 5048 5048 5048 5048 5048 5287 5287 5287 5287 5287 5287 5287

The 3′ Flower Bud EST set shows significantly less overall clustering error than the 5′ above-ground-organ (ABGR) EST set.
anis are gene frequencies based on genome annotation.
bcis are gene frequencies based on CAP3 clustering with overlap length = 40 bp, and identity criterion in the superscripts.

these clusters. The net Type II error, EIInet = EIItot −EII ,
is a measure of the underestimate of unigene number due to
Type II error. For example, at P = 80%, each of 61 (EII )
clusters contained ESTs at least from 2 of 125 different genes
(EIItot). A simple calculation gives a loss of 64 (= 125−61)
(EIInet) in the cluster count. Difference between EInet and
EIInet gives the deviation of c+ from n+, that is,

c+ − n+ = EInet − EIInet.

If c+ > n+, then Type I error is dominant, while Type II error
dominates if c+ < n+. We note that one could have c+ = n+
but not have c = n. So c+ and n+ merely summarize the
overall errors.

Based on these statistics, we define Type I and Type II error
rates as follows:

α = EI

n+ − n1
,

and

β = EII

n+
.

Note the difference in the denominators. Type I error involves
the separation of a true cluster which requires at least two
ESTs in that cluster. Genes only represented by singletons
never contribute to Type I error. Therefore, the denominator
of α does not include true singletons. However, true singletons
can be mis-clustered with other ESTs if sequence similarity is
sufficiently high. Therefore, these genes were counted in the
the Type II error rate, β.

These error rates clearly summarize the changing pattern of
the two types of errors with P (Table 3). The Type I error rate
doubled as P changed from 90 to 95%, and doubled again

from P = 95 to 97.5%. The Type II error rate kept decreasing
as P increased. These results are intuitive and suggest that
the choice of identity parameter depends on whether one is
interested in minimizing Type I, Type II or overall error rates.
Our analysis of the Arabidopsis flower bud EST set suggests
that 90% was the optimal identity criterion in terms of overall
error.

3.1.2 A.thaliana above ground organ 5′ cDNA library The
second data set we examined was A.thaliana 2–6 weeks
above-ground organ ESTs (UniLib # = 17695, to be called
ABGR hereafter). In this data set, 5522 ESTs of 5894 had sig-
nificantly matching regions on the genome sequence. Among
these, 5284 matched the annotated loci with concordant cod-
ing direction, and 238 ESTs with opposite coding direction.
If we regard the 238 sequences as 3′ ESTs mislabeled to be 5′
ESTs, this will give a mislabeling rate estimate of 4.3%, about
half as large as the 3′ EST case (8.2%). Among the remaining
327 (5894 − 5522) ESTs, 279 matched regions that were not
annotated as genes, and 48 generated no significant match to
the genome.

The Type II error rate was similar to that of the 3′ EST set
(Table 3). It decreased from 2.9% at P = 75% to 0.5% at P =
97.5%. At P = 95 and 97.5%, Type II errors were mainly
due to instances where ESTs within each cluster matched the
neighboring loci on the genome, similar to the case of the 3′
EST set.

A slight increase in Type I error rate was observed when
P was increased from 75% to 95%. However, there was
a 2.9% jump in Type I error when P was increased from
95 to 97.5%. This suggests that the sequencing error prob-
lem was not as severe in this 5′ EST set as in the 3′ EST
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Table 2. Type I and Type II error decomposition in Arabidopsis thaliana Flower Bud tissue and above-ground-organs (ABGR) EST sets

Error Flower bud ABGR
75% 80% 85% 90% 95% 97.5% 75% 80% 85% 90% 95% 97.5%

Type I aClusters/Gene 2 — 2 — 2 — 2 2 3 2 3 4+ 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4
bGene Freq. 20 — 22 — 22 — 23 60 2 103 12 3 234 23 17 235 22 8 236 22 8 244 24 7 252 34 7 265 43 11

Type II cGenes/Cluster 2 3 2 3 2 3 2 2 — 2 — — 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 —
dCluster Freq. 58 3 58 3 55 1 28 11 — 6 — — 62 43 1 59 6 1 51 6 1 28 5 1 17 1 1 10 1 —

aClusters/Gene is the number of subclusters formed in the sample by the ESTs from one gene when a Type I error occurs. bGene Freq. is the frequency of such genes. For example, at P = 80% in Flower Bud data, 22 genes were
separated into two subclusters, while there were 60 such genes at 95%.
cGenes/Cluster is the number of genes that the ESTs in one cluster belong to when a Type II error occurs and
dCluster Freq. is the frequency of such clusters. For example, at P = 80% in the Flower Bud data, there were 58 clusters that contained two distinct genes due to Type II error.
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Table 3. Type I and Type II clustering error rates over a range of clustering
identity parametersa

Library Identitya EI b EI c
tot EI d

net αe EII f EII
g
tot EII h

net β i

(%) (%) (%)

Flower 75 20 40 20 2.7 61 125 −64 2.8
bud 80 22 44 22 3.0 61 125 −64 2.8

85 22 44 22 3.0 56 113 −57 2.5
90 23 46 23 3.2 28 56 −28 1.3
95 62 126 64 8.5 11 22 −11 0.5
97.5 118 258 140 16.2 6 12 −6 0.3

ABGR 75 265 565 300 29.8 70 149 −79 2.9
80 265 568 303 30.1 66 140 −74 2.7
85 266 570 304 30.3 58 124 −66 2.3
90 275 588 313 31.3 34 75 −41 1.4
95 293 634 341 33.3 19 41 −22 0.8
97.5 319 703 384 36.2 11 23 −12 0.5

Owing to insufficient overlap of EST sequences, the Type I error rates are quite high for
the 5′ above-ground-organ EST set relative to the 3′ flower bud EST.
aIdentity rule P in CAP3 with overlap length O = 40 bp.
bThe number of genes that have Type I errors.
cThe total number of subclusters generated from genes in EI due to Type I error.
dEInet = EItot − EI is the net inflation of EST cluster count due to Type I error.
eType I error rate: α = EI/(n+ − n1). n+ is the total number of genes from genome
annotation result in Table 1.
f The number of EST clusters that contain ESTs from at least two different genes.
gThe total number of genes represented by EST clusters in EII.
hEIInet = EIItot − EII measures the net reduction of EST cluster count due to Type
II error.
iType II error rate: β = EII/n+.

example. However, as expected, the Type I error rate was
∼10 times higher when clustering 5′ ESTs relative to the error
rate observed in the 3′ EST example (Table 3). The cause of
this substantial Type I error for 5′ EST assembly is the ISO
error.

Despite the large Type I error rate, we can still determine
the optimal identity rule P by examining the change of net
Type I and Type II errors �E = �EI + �EII across dif-
ferent identity criteria. The optimal P will lead to �E < 0.
For example, from P = 80 to 85%, Type I error frequency
increased by 1 (266 − 265), while Type II error decreased
by 8 (66 − 58). Since �E = −7 < 0, 85% was better than
80%. We found that P = 90% was the optimal identity cri-
terion and P = 95% only slightly worse (�E85–90 = −15,
�E90–95 = +3).

3.2 ISO error
3.2.1 ISO error distribution The results shown in Table 3
suggest a Type I error rate as large as 36.2% in the 5′ EST
clustering, substantially larger than the 3′ EST example.
The significant increase in Type I error was caused by ISO
error. In the present study, the empirical ISO error dis-
tribution simulated based on the training data is partially
listed in Table 4 (a complete version through X = 30
can be found in the supplementary materials). Inspection of

Table 4. The empirical ISO error distribution

Xa Y b
1 Y b

2 Y b
3 Y b

4 Prob.c

2 1 1 0 0 0.208
2 0 0 0 0.792

3 1 1 1 0 0.027
2 1 0 0 0.234
3 0 0 0 0.739

4 1 1 1 1 0.001
2 1 1 0 0.041
2 2 0 0 0.057
3 1 0 0 0.187
4 0 0 0 0.713

5 2 1 1 1 0.004
2 2 1 0 0.016
3 1 1 0 0.030
3 2 0 0 0.077
4 1 0 0 0.168
5 0 0 0 0.706

6 2 2 1 1 0.002
2 2 2 0 0.001
3 1 1 1 0.003
3 2 1 0 0.022
3 3 0 0 0.026
4 1 1 0 0.027
4 2 0 0 0.065
5 1 0 0 0.145
6 0 0 0 0.707

7 2 2 2 1 0.001
3 2 1 1 0.003
3 2 2 0 0.002
3 3 1 0 0.002
4 1 1 1 0.003
4 2 1 0 0.017
4 3 0 0 0.040
5 1 1 0 0.022
5 2 0 0 0.059
6 1 0 0 0.140
7 0 0 0 0.712

8 3 2 2 1 0.001
3 3 1 1 0.001
3 3 2 0 0.002
4 2 1 1 0.002
4 2 2 0 0.002
4 3 1 0 0.008
4 4 0 0 0.016
5 1 1 1 0.002
5 2 1 0 0.015
5 3 0 0 0.038
6 1 1 0 0.022
6 2 0 0 0.058
7 1 0 0 0.119
8 0 0 0 0.714

aX is the true number of ESTs for one gene.
bY = (Y1, Y2, Y3, Y4) is the clustering outcome given X (so X = Y1 + Y2 + Y3 + Y4),
each subcluster with Y1, Y2, Y3, Y4 ESTs respectively. If Y2 = Y3 = Y4 = 0, then the
cluster is complete.
cProb. is the empirical probability of observing an outcome Y given the true number of
ESTs that one gene has, namely, Prob(Y|X = x).

P(Y|X) suggests, e.g. that 20.8% of the genes with two ESTs
in a sample are expected to be observed as two singletons
due to ISO error.
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The ISO error can be further summarized in a conditional
expectation matrix P (1), with entries

Pij ≡
4∑

t=1

P(yt = j |X = i), j = 1, . . . , ≤ i.

P10 =


1 0 0 0 0 0 0 0 0 0
.416 .792 0 0 0 0 0 0 0 0
.315 .234 .739 0 0 0 0 0 0 0
.275 .155 .187 .713 0 0 0 0 0 0
.256 .112 .106 .168 .706 0 0 0 0 0
.235 .096 .076 .092 .147 .707 0 0 0 0
.219 .085 .048 .059 .081 .140 .712 0 0 0
.200 .083 .052 .044 .055 .080 .119 .714 0 0
.197 .079 .052 .034 .036 .054 .071 .112 .717 0
.187 .073 .040 .028 .032 .033 .047 .058 .110 .730



(1)

Here, Pij is the expected frequency of clusters with j ESTs
that would be generated from a true cluster with X = i ESTs
due to ISO error. The 10×10 triangular matrix P10 = {Pij : i =
1, . . . , 10, j = 1, . . . , 10} summarizes the simulation results
for X ≤ 10. For example, for every gene with exactly two
ESTs in the sample, the expected number of singletons gen-
erated due to insufficient overlap of ESTs is 0.416. In other
words, for every 100 genes with two ESTs, 79 are expected to
form contigs, and 21 to be split into two singletons creating 42
‘clusters’. The i-th diagonal elements, Pii , plotted in Figure 2
gives the probability that there is no ISO error, so the ESTs
from a gene with i ESTs in the sample are clustered together.

The probability of no ISO error, Pii , as a function of the
true number of ESTs per gene, shows an interesting convex
pattern (Fig. 2). Starting with 0.792 at X = 2, the error-free
rate keeps descending until X = 5, then climbs steadily. Ini-
tially the decline is due to the fact that in order to connect two
ESTs, only one region of overlap is needed, whereas more
regions of overlap are required to join additional ESTs. As a
consequence, there is a higher probability of ISO error when
X = 3 than X = 2. However, since the cDNA length is
limited, eventually more ESTs result in a larger chance of
overlap and the probability of ISO error decreases. Of course
this pattern is dependent upon the three afore-mentioned dis-
tributions. For example, increasing the EST length may result
in more reduction of ISO errors at X = 3 than X = 2. As a
consequence, this convex pattern may vanish as sequencing
technology improves.

3.2.2 ISO error correction The simulated ISO error dis-
tribution can be used to correct for the ISO error based on
its probabilistic definition, thereby improving the estimates
of the true gene clustering profile data n. Usually in an EST
set from one cDNA library, cluster counts ni for i ≥ 20 are
relatively much smaller than those of smaller clusters. Further-
more, the ISO error rate for X ≥ 20 is smaller than small Xs

Fig. 2. Probability of being a complete cluster (no ISO error), given
the true number of ESTs for a gene. The x-axis is the true number of
ESTs that one gene has in the sample. The y-axis is the probability of
observing that all the ESTs from that gene with X ESTs are clustered
together in the sample. Genes with lower expression contribute most
of the ISO error.

(see Supplementary materials and Fig. 2). Therefore, the ISO
error from clusters with more than 20 ESTs (ni for i > 20) is
trivial. It is usually adequate to estimate nis, for i ≤ 20 and
accept the observed expression profile values, ci , for i > 20.
Suppose we observe

c = (c1, c2, . . . , c20, . . . , ct ).

Let

P20.t =
[

PT
20 0
0 It−20

]
,

where It−20 is a (t − 20) × (t − 20) identity matrix. Then
under certain assumptions, i.e. the other error sources can be
ignored compared with the ISO error in 5′ EST clustering,
and the simulated error distribution represents the true one,
we approximately have

E(c|n) = P20.tn.

where ‘E’ means expectation. This immediately gives an
unbiased estimate of n as

n̂ = P −1
20.t c. (2)

P20.t will be called the ISO Error Correction Matrix. We
can decrease P20 to P10 if the EST sample size is relatively
small, e.g. ci ≤ 5 for i ≥ 10. The estimate n̂ can be regarded
as a much better estimate of n than the observed expression
profile, c.

To illustrate the performance of this method, we now use
P20 to correct c90 in A.thaliana ABGR set, and an additional
A.thaliana Root 5′ EST set (UniLib # = 17709) obtained and
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Table 5. ISO correction for A.thaliana above-ground-organ and Root 5′
EST sets

Cluster size (i) ABGR tissue ROOT tissue
ani

bc90
i

cn̂90 ani
bc90

i
cn̂90

1 1600 1969 1684 1985 2304 1997
2 439 399 421 479 435 469
3 171 152 173 177 133 134
4 75 60 63 101 96 114
5 54 46 54 53 38 38
6 30 25 28 35 40 49
7 18 14 14 20 18 21
8 17 17 20 22 15 18
9 12 8 8 9 6 6

10 13 13 16 5 7 8
>10 50 47 52 42 45 49

n+ or c+ 2479 2708 2533 2928 3137 2903
ESTtot 5287 5287 5287 5573 5573 5573

anis are gene frequencies based on genome annotation.
bcis are gene frequencies based on CAP3 clustering with overlap length = 40 bp, and
identity in the superscripts.
cn̂i is the corrected result from P20.

processed in the same way. The superscript in c90 indicates
that a 90% identity rule was used in CAP3.

The n, c, n̂ are listed in Table 5. Under this correction, for the
ABGR data, the singleton count decreased from 1969 to 1684.
The bias decreased from 369 (= 1969−1600) to 84 (= 1684−
1600). Furthermore, the bias for the frequency of clusters of
size 2 was reduced from −40 to −19. The total number of
inferred unigenes is n̂+=2533, much closer to the n+ = 2479
than c+ = 2780. A substantial correction effect is also
observed for the root data. In this case, ISO correction resulted
in a very small (0.8%) underestimate of the true number of uni-
genes in the EST set (n̂+ = 2903 versus n+ = 2928), whereas
the uncorrected unigene estimate (c+ = 3137) was a substan-
tial 7.1% overestimate. Methods for simulation of ISO error
distribution when the genome or complete cDNA sequences
are not available are further discussed in Discussion section.

3.2.3 Expectation of Type I error from ISO error From
the ISO error distribution, we can calculate the expectation
of Type I error due to ISO. Note Pii in the P matrix is the
probability of NOT observing ISO error for x = i. If we
know n, the expectation of α can be calculated by

E(α|n) = 1 −
∑t

i=2 niPii

n+ − n1
. (3)

If n data are not available, one can use n̂i from (2) in
Equation (3) to calculate an approximate expectation. In the
ABGR example where n is available, this gives E(α|n) =
25%. The expectation here is 6% lower than α ≈ 31%
observed without ISO correction (Table 3). The difference
could be due to the random variation of the realized ISO

error, sequencing error and other sources of random error.
Clearly the majority of Type I error in estimates of gene cluster
profiles was effectively corrected by the proposed method
(25/31 = 81%).

4 DISCUSSION
Accurate estimation of the gene cluster profile n allows invest-
igators to use EST data sets to make important inferences
about the cDNA libraries from which ESTs were sampled.
We have provided a means for improving estimates of gene
cluster profiles by correcting for ISO error. In the following
paragraphs, we further discuss the relationship between clus-
tering criteria and clustering error; we propose two alternative
ways for ISO error distribution simulation when the complete
cDNA or genome sequences are unavailable; we also discuss
the impact of the alternative splicing on the estimation of n
and illustrate an application of ISO error correction to estimate
the sampling redundancy in an EST data set.

4.1 Clustering algorithm and clustering criteria
One can clearly see the interaction of Type I and Type II errors
as clustering criteria change in CAP3. The optimality of clus-
tering criteria depends on the desired clustering outcome. For
example, in both the 5′ and 3′ EST examples, the Type II error
rate decreased steadily as the identity criterion increased and
almost vanished when using P = 95%. From P = 95 to
97.5% the Type I error due to sequencing error increased dra-
matically in the 3′ case, but the increase was much milder
in the 5′ EST clustering. These case studies suggest that for
applications that require minimizing Type II errors, 95% is a
good rule, but 90% as shown, is better in minimizing the over-
all error levels. For applications using the gene cluster profile
n or digital gene expression profile Xj (Audic and Claverie,
1997; Stekel et al., 2000), we cautiously warn readers against
using an excessively stringent identity rule P in EST cluster-
ing because it can inflate the Type I error rate. In particular,
when using n data for inference of cDNA library properties,
substantial ISO error must be taken into account for legitimate
quantitative conclusions, especially for 5′ EST data. We also
tried Type I and Type II error decomposition on several other
individual EST sets of A.thaliana including data derived from
a root cDNA library, 3′ ESTs from ABGR and seed cDNA
libraries. The distributions of Type I and Type II errors were
similar to what we observed in the above examples (results
not shown).

The other main criterion in clustering is the overlap
length O. Throughout this paper, we used O = 40 bp as the
cutoff (also used by TIGR, see http://www.tigr.org/tdb/tgi/
definitions.html). We did compare the clustering result using
different overlap lengths from 25 to 40 bp. The resulting dif-
ference in the clustering outcome is negligible for both 3′
and 5′ EST cases (data not shown). Furthermore, we rarely
observed the occurrence of false joining of two ESTs (Type
II error) due to the short overlap length when we investigated
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the Type II error cases at the 90% identity rule. This suggests
that a 25 bp overlap rule would be adequate.

The results on the clustering criteria choice based on CAP3
are not directly applicable to other clustering approaches,
however they provide insights to other clustering procedures.
All the clustering algorithms based on sequence similarity
comparison must face the Type I and Type II error issue. An
ideal setting of criteria would be one that is stringent enough
to separate paralogs while is capable of tolerating sequen-
cing error to avoid Type I error. These two types of errors
may differ in magnitude but must have similar dependence
pattern as illustrated based on CAP3. In addition, the ISO
error is the common and unavoidable issue for any approach
if genomic or proteomic information is unavailable, even the
sequence quality is perfect. We believe that the scope and
pattern of ISO error presented here will be similar under dif-
ferent gene-identification-oriented EST clustering programs
(rather than gene family). For example, STACK_pack first
performs loose pre-clustering using d2_cluster (Burke et al.,
1999) based on sequence similarity, then uses CRAW (Burke
et al., 1998; Chou and Burke, 1999) and CONTIGPROC
(Miller et al., 1999) to detect subgroups (e.g. alternative spli-
cing forms, paralogs) present in the pre-clustering result. The
loose pre-clustering allows capturing splice variants and true
sibling ESTs with poor quality, thereby reducing Type I error,
whereas the CRAW and CONTIGPROC step helps to reduce
Type II error. Since the ‘consistency’ criterion in the group
partitioning strategy of CRAW is defined based on sequence
similarity (Burke et al., 1998), we suspect that a good rule
for distinguishing the substructure while tolerating sequen-
cing error also depends on the sequence quality. In addition
the ISO error problem remains since an EST that does not
overlap with its siblings, will be regarded as a singleton in the
pre-clustering stage. It would be our great interest to conduct
a similar error analysis and compare it with CAP3 results in
the near future.

4.2 ISO error correction and simulation
One remarkable feature of the proposed ISO error correction
method is its applicability to an EST set of arbitrary size. The
distribution of ESTs sampled per gene (X) obviously changes
with the EST sample size. Thus the overall Type I error rate due
to ISO also changes since P(Y|X) depends on X. In general,
the error rate decreases as the EST sample size increases but
at a slow pace as shown in Figure 2. However by design the
ISO error correction matrix P is independent of sample size or
the X distribution. For example, if one generates ESTs from
the same species under the similar protocol, the ISO error
simulated from a subsample can be used to correct for ISO
error for larger samples.

ISO error estimation and correction are dependent upon
three sources of information: the distribution of EST read
lengths [F(LE)], the mRNA length distribution [F(Lm)],
and the conditional distribution of the start position given

the mRNA length [F(S|Lm)]. The simulation method we
described could easily be repeated to find the correction matrix
P that is based on the observed sample EST length distribu-
tion F(LE) for any given library. However, both F(Lm) and
F(S|Lm) for a given library may be influenced by among-
species variation in mRNA length as well as particulars of
mRNA extraction and library building procedures. In our
examples above, these parameters were based on analysis of
complete cDNAs that may not be available for a given species.

How could one simulate the ISO error distribution for a
species that does not have complete cDNA sequences? One
simple solution is suggested here. We can first cluster all avail-
able sequence data for a particular species and treat contigs of
large clusters (e.g. X ≥ 20 or 30) as complete cDNAs, then
simulate the ISO error as we have done in this paper. For the
same training Arabidopsis ESTs, the average contig length for
X ≥ 20 and X ≥ 30 were 1263 and 1440 respectively, shorter
than 1553 for the complete cDNA sequences in the training
data. The simulated ISO error distribution under this strategy,
however in both situations were satisfactory (Supplement-
ary materials). The error-free probabilities were presented in
Table 6 for X ≤ 10.

This implies that when X is small, the ISO error rate is not
too sensitive to the relatively small change of F(Lm). Since
the distribution of X in EST data is concentrated at small
values, e.g. n1 + n2 + n3 in the ABGR data accounted for
2210/2479 = 89% of the genes. Therefore, the correction
effect from the simplified method should be satisfactory.

The above strategy in ISO error simulation has been integ-
rated into the ESTstat software. In addition to using con-
tigs with many ESTs, one alternative solution that ESTstat
provides is to utilizes F(Lm) and F(S|Lm) information from
a species with a large full-length cDNA set such as A.thaliana
to simulate P(Y|X) for the new species. This approach is
based on the assumption that the complete cDNA length dis-
tribution F(Lm) from the known and unknown species are
similar. For example, the average length of rice complete
cDNA sequences from http://cdna01.dna.affrc.go.jp/cDNA/ is
1700 bp, ∼130 bp longer than that of A.thaliana obtained in
the training data, suggesting that the complete cDNA length
distribution over different plant species can be similar. If the
ESTs are sequenced under similar protocols, one can use
F(Lm) and F(S|Lm) information from A.thaliana or rice to
simulate the ISO errors for other plant species.

One assumption we implicitly made in ISO error simu-
lation is that the transcript length does not depend on the
expression level. This assumption is supported by observa-
tions of no strong relationship between protein length and EST
counts in Caenorhabditis, Drosophila or Arabidopsis (Duret
and Mouchiroud, 1999). It is also strongly supported by our
ongoing examination of the relationship between gene length
and expression level using large EST and complete cDNA sets
from A.thaliana and mouse. This hypothesis will be examined
further using results from microarray experiments.
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Table 6. Comparing the error-free probability P [Y = (x, 0, 0, 0)|X = x] for
x = 2–10 simulated with and without complete cDNAs

X 2 3 4 5 6 7 8 9 10

With cDNAsa 0.80 0.74 0.71 0.71 0.69 0.72 0.72 0.71 0.75

No cDNAsb 0.82 0.73 0.74 0.76 0.76 0.78 0.79 0.80 0.80

No cDNAsc 0.79 0.73 0.71 0.70 0.71 0.71 0.74 0.75 0.75

aISO error was simulated using complete cDNA set in the EST clustering as discussed
in the text.
bISO error was simulated without using complete cDNA set. We clustered the same
48 827 5′ A.thaliana ESTs as used in the text. The contigs of the large EST clusters with
X ≥ 20 respectively were treated as complete cDNAs and used to simulate the ISO error
distribution P(Y|X).
cSame as the previous ore, but used X ≥ 30.

4.3 Alternative splicing
The existence of alternative splicing forms (Modrek and Lee,
2002) causes some ambiguity in the definition of Type I and
Type II errors. We defined Type I and Type II errors in terms of
genes (loci) rather than transcripts. This is primarily because
ESTs from different splicing forms can be indistinguishable
due to the short length of EST sequences. In this case, two sib-
ling ESTs can originate from transcripts with different splicing
forms, but if both ESTs span only the common exon regions of
a gene, they will not appear to be different. Thus, the observed
splicing rate from EST sequences will be a lower bound and
underestimate of the true splicing rate in a given library. Addi-
tionally, when the alternative splicing rate is low in individual
tissues, using the genome annotation-based clustering result
as reference counts becomes a sensible way to evaluate Type
I and Type II errors. If we had defined these errors in terms
of unique transcripts, then the lack of complete transcrip-
tome information, and the inability to distinguish some ESTs
derived from different transcripts of the same gene, would
make Type I and Type II errors hard to evaluate.

In our method for ISO error correction (also in the EST-
stat 1.0 software), alternative splicing is currently ignored.
By matching ESTs to genome we found a very low
observed alternative splicing rate in individual Arabidop-
sis EST sets. This is consistent with the expectation of
a relatively low frequency of alternative splicing phenom-
ena in plants (Haas et al., 2002) as compared to mam-
malian systems (Wright et al., 2001). This observation
is also supported by the results reported by TIGR at
http://www.tigr.org/tdb/tgi/plant.shtml. For example, 2216
alternative splicings were reported for A.thaliana based on
the gene indices of 227 670 ESTs (January 12, 2004 ver-
sion). For the the tomato data, only 492 such cases based
on 155 317 ESTs were listed at the same website (Gene Index
version April 17, 2003). The motivating applications often
involve EST data of much smaller size, hence the chance of
detecting such alternative splicings must be proportionally

smaller. As we increase the sample size or mix ESTs from
different tissues, the alternative splicing phenomenon may
be observed more frequently when the true rate is high
(Harrison et al., 2002; Modrek and Lee, 2002). In that situ-
ation, the recovered counts n̂is will deviate upward from the
genome annotation-based result n to an extent depending on
the true alternative splicing rate.

4.4 Applications
Explicit identification of Type I and Type II error rates, and
analytical procedures to minimize errors of interest, can help
the interpretation of EST datasets and clustering results. For
example, it has been reported that the UniGene cluster count is
∼35% larger than the true number of genes predicted for Ara-
bidopsis (The Arabidopsis Genome Initiative, 2000; Van der
Hoeven et al., 2002). One expected reason is that the usual ISO
clustering error dominates the error structure of 5′ EST cluster-
ing results, as shown in this paper. In addition, 5′ and 3′ ESTs
are mixed in the usual UniGene clustering. This increases fur-
ther the chance of insufficient overlap especially between 5′
ESTs and their 3′ siblings if they are located far away from
each other at the two ends of long cDNA clones (Fig. 1).
Alternatively, for relatively short cDNA sequences, availabil-
ity of 5′ as well as 3′ EST sequences should reduce ISO error.
For these reasons, the ISO error is hard to evaluate quantitat-
ively. Over-stringent clustering criteria can be another cause
of high Type 1 error rate in EST clustering.

A simple application using the ISO error correction is the
estimation of the number of genes n+ that have been sampled.
This number is needed in order to evaluate EST sampling
redundancy, which can be defined as the average ESTs per
gene, i.e. #ESTs/n+. For example the true number of genes
sampled in the ABGR library was 2479; the observed number
of unique sequences was 2708 and the estimate after ISO cor-
rection was 2533 (Table 5). Sequencing redundancy for this
library is 5287/2479 = 2.13 whereas it would be estimated
as 1.95 without ISO error correction, and 2.08 with correc-
tion. In a subsequent paper, we will show how to use n̂ from
a single EST set or multiple sets to estimate the number of
expressed genes in the underlying tissue(s). This will further
illustrate the importance of correcting ISO error.

Although we used plant EST sets for illustration through-
out this paper, the methods and software developed here are
also applicable to EST data from other organisms includ-
ing mammals. However, as discussed earlier, if alternative
splicing occurs frequently in the given species and library,
then the gene cluster profile data from CAP3 can be inflated
even after ISO error correction (for 5′ case). The methods
developed in this and a subsequent papers are designed for
statistical analysis of the properties of a single or multiple
cDNA libraries rather than genome-assisted EST clustering.
In the current version of ESTstat 1.0, there is no limit to the
EST sample size.
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